IRSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

### POTENTIAL OF HYBRID COMPUTATIONAL PHANTOMS IN RADIOTHERAPY FOR HEART AND CORONARIES DOSIMETRY

#### Alexandra MOIGNIER,

David BROGGIO, Sylvie DERREUMAUX, Bernard AUBERT, Didier FRANCK

Institut de Radioprotection et de Sûreté Nucléaire (IRSN, France)

ICRS & RPSD 2012, Nara, Japan



### Context

- Travis et al., Journal of the National Cancer Institute [1]:
  - "Second malignant neoplasms (SMNs) and <u>cardiovascular disease</u> (CVD) are among the most serious and life-threatening late adverse effects experienced by the growing number of cancer survivors worldwide and are due in part to radiotherapy"
  - The National Council on Radiation Protection and Measurements: one research priority is to characterize risks of SMNs and CVD in terms of radiation dose and type
- Current retrospective cardiovascular dosimetry studies are based on a representative patient [2] or simple mathematical phantoms [3]

Travis et al. JNCI. 2012
Taylor CW et al. Int. J. Radiol. Biol. Phys. 2007
Shamsaldin A et al. Radiother. Oncol. 1998



## Aims

- Exploite the potential of the hybrid computational phantoms to improve the cardiovascular dosimetry in radiotherapy (RT)
- Carry out sensitivity studies: here, dose sensitivity due to the coronary topology





### Database

- 83 RT records of women with a breast cancer
- 20 CT angiography records of patients with coronary lesions following Hodgkin lymphoma RT
- A detailed heart model from Anatomium 3D







IRS

# I. IMPROVE THE CURRENT RETROSPECTIVE DOSIMETRY

POTENTIAL OF HYBRID COMPUTATIONAL PHANTOMS IN RADIOTHERAPY FOR HEART AND CORONARIES DOSIMETRY



# First, Modeling from CT images



# First, Modeling from CT images







# Second, Modeling from radiographies





POTENTIAL OF HYBRID COMPUTATIONAL PHANTOMS IN RADIOTHERAPY FOR HEART AND CORONARIES DOSIMETRY



# Second, Modeling from radiographies











IRSE

## Main results

#### Modeling from CT images:

- Validation of the method in terms of morphology and dosimetry
- Mean dose to the IVA is at least 5 fold the heart dose (3 models)

#### Modeling from radiographies:

- Morphologically, the model is closer to the patient anatomy than the representative patient
- Dosimetrically, it is equivalent or slightly better
- A library of thoracic phantoms can be interesting for dose reconstruction in retrospective studies when only radiographies are available

More details in the Int. J. Radiol. Biol. Phys., 2012, article in press:
Moignier et al, Potential of Hybrid Computational Phantoms for Retrospective
Heart Dosimetry After Breast Radiation Therapy: A Feasibility Study

# II. DOSE SENSITIVITY TO THE CORONARY TOPOLOGY

POTENTIAL OF HYBRID COMPUTATIONAL PHANTOMS IN RADIOTHERAPY FOR HEART AND CORONARIES DOSIMETRY



#### Models with different coronary topologies



A single representative thorax



10 hearts with different coronary topologies from CT angiography

POTENTIAL OF HYBRID COMPUTATIONAL PHANTOMS IN RADIOTHERAPY FOR HEART AND CORONARIES DOSIMETRY

#### Heart scaling

#### Dessus Initial heart After Before of the thorax Deformation Initial heart **Before** After of the thorax Deformation

#### Resulting model



#### Classic current breast radiotherapy



## **Studied questions**

- 1. What is the dose spread within each structure?
- 2. Which structure receive high doses ?
- 3. Which beam is responsible for high doses ?
- 4. How is the dose distribution along the coronaries ?
- 5. Is the mean heart dose a good surrogate for IVA doses?

# 1. What is the dose spread within each structure ?

Dose-Volume histograms - Pat05 - All beams



IVA is an organ-at-risk not well spared in left-side breast RT because it receives high doses within a high volume

POTENTIAL OF HYBRID COMPUTATIONAL PHANTOMS IN RADIOTHERAPY FOR HEART AND CORONARIES DOSIMETRY

# 1. What is the dose spread within each structure ?

|       | Dose dispersion, σ/μ, |                                |       |                                  |                              |  |  |  |  |  |  |  |  |
|-------|-----------------------|--------------------------------|-------|----------------------------------|------------------------------|--|--|--|--|--|--|--|--|
|       | per                   | per structure for each patient |       |                                  |                              |  |  |  |  |  |  |  |  |
|       | Heart                 | Heart IVA Cx R TC              |       |                                  |                              |  |  |  |  |  |  |  |  |
| Pat01 | 64.5%                 | 37.4%                          | 14.6% | 40.0%                            | 9.3%                         |  |  |  |  |  |  |  |  |
| Pat02 | 66.7%                 | 52.0%                          | 11.5% | 24.0%                            | 3.4%                         |  |  |  |  |  |  |  |  |
| Pat03 | 72.8%                 | 58.4%                          | 6.2%  | 30.5%                            | 3.2%                         |  |  |  |  |  |  |  |  |
| Pat04 | 69.8%                 | 67.1%                          | 30.1% | 37.9%                            | 7.3%                         |  |  |  |  |  |  |  |  |
| Pat05 | 83.1%                 | 74.5%                          | 7.8%  | 20.2%<br>33.2%<br>15.7%<br>30.9% | 5.3%<br>9.4%<br>3.9%<br>3.9% |  |  |  |  |  |  |  |  |
| Pat06 | 84.1%                 | 68.4%                          | 7.7%  |                                  |                              |  |  |  |  |  |  |  |  |
| Pat07 | 81.8%                 | 85.6%                          | 13.1% |                                  |                              |  |  |  |  |  |  |  |  |
| Pat08 | 74.4%                 | 50.2%                          | 11.9% |                                  |                              |  |  |  |  |  |  |  |  |
| Pat09 | 97.1%                 | 40.0%                          | 5.0%  | 25.3%                            | 4.3%                         |  |  |  |  |  |  |  |  |
| Pat10 | 78.7%                 | 78.7% 40.2% 41.6% 46.0% 4.5%   |       |                                  |                              |  |  |  |  |  |  |  |  |
| Mean  | 77.3%                 | 57.4%                          | 15.0% | 30.4%                            | 5.4%                         |  |  |  |  |  |  |  |  |

IVA = Inter-Ventricular Artery Cx = Circumflex artery R = Right artery TC = Common trunk

High dose spread within the heart and the IVA

#### 2. Which structure receives high doses ?

|       |       | Mean Dose (Gy) |     |     |     |  |  |  |  |  |  |  |
|-------|-------|----------------|-----|-----|-----|--|--|--|--|--|--|--|
|       | Heart | Heart IVA Cx R |     |     |     |  |  |  |  |  |  |  |
| Pat01 | 2.8   | 7.1            | 2.3 | 1.7 | 2.6 |  |  |  |  |  |  |  |
| Pat02 | 2.6   | 5.5            | 2.2 | 2.0 | 2.4 |  |  |  |  |  |  |  |
| Pat03 | 2.5   | 6.1            | 2.4 | 1.6 | 2.2 |  |  |  |  |  |  |  |
| Pat04 | 2.6   | 7.5            | 2.2 | 1.5 | 2.5 |  |  |  |  |  |  |  |
| Pat05 | 2.7   | 10.9           | 2.5 | 1.7 | 2.5 |  |  |  |  |  |  |  |
| Pat06 | 2.7   | 7.6            | 2.1 | 2.1 | 1.9 |  |  |  |  |  |  |  |
| Pat07 | 2.6   | 8.6            | 2.3 | 2.3 | 2.3 |  |  |  |  |  |  |  |
| Pat08 | 2.7   | 8.2            | 2.4 | 1.9 | 2.6 |  |  |  |  |  |  |  |
| Pat09 | 2.7   | 7.3            | 2.6 | 1.9 | 2.5 |  |  |  |  |  |  |  |
| Pat10 | 2.5   | 5.4            | 1.7 | 1.5 | 2.2 |  |  |  |  |  |  |  |

| Mean µ                      | 2.6  | 7.4   | 2.3  | 1.8   | 2.4  |
|-----------------------------|------|-------|------|-------|------|
| Standard deviation $\sigma$ | 0.1  | 1.6   | 0.2  | 0.3   | 0.2  |
| Dispersion $\sigma/\mu$     | 4.1% | 22.0% | 5.5% | 14.9% | 8.8% |

IVA with high mean dose and high interpatient dose dispersion compared with the other structures



#### 2. Which structure receives high doses ?

|       | Maximal Dose (Gy) |      |     |     |     |  |  |  |  |  |
|-------|-------------------|------|-----|-----|-----|--|--|--|--|--|
|       | Heart             | IVA  | Cx  | R   | тс  |  |  |  |  |  |
| Pat01 | 25.3              | 16.9 | 2.9 | 2.7 | 3.2 |  |  |  |  |  |
| Pat02 | 25.9              | 12.6 | 2.5 | 2.7 | 2.6 |  |  |  |  |  |
| Pat03 | 25.3              | 21.9 | 2.7 | 2.3 | 2.4 |  |  |  |  |  |
| Pat04 | 25.3              | 24.1 | 2.8 | 2.3 | 2.9 |  |  |  |  |  |
| Pat05 | 29.5              | 30.0 | 2.8 | 2.4 | 2.8 |  |  |  |  |  |
| Pat06 | 28.7              | 27.2 | 2.6 | 3.1 | 2.3 |  |  |  |  |  |
| Pat07 | 29.0              | 28.8 | 2.6 | 2.9 | 2.6 |  |  |  |  |  |
| Pat08 | 26.0              | 22.4 | 2.8 | 2.8 | 2.9 |  |  |  |  |  |
| Pat09 | 38.9              | 24.2 | 2.8 | 2.7 | 2.8 |  |  |  |  |  |
| Pat10 | 26.9              | 11.5 | 2.5 | 2.5 | 2.5 |  |  |  |  |  |

| μ   | 28.1  | 22.0  | 2.7  | 2.6          | 2.7  |
|-----|-------|-------|------|--------------|------|
| σ   | 4.1   | 6.4   | 0.2  | 0.3          | 0.3  |
| σ/μ | 14.7% | 29.2% | 5.5% | <b>9.8</b> % | 9.3% |

Heart and IVA maximal doses with a highest order of magnitude than the maximal doses of the other stuctures



#### 3. Which beam is responsible for high doses?

|           | Mean dose (Gy)   |     |     |     |     |  |  |  |  |  |
|-----------|------------------|-----|-----|-----|-----|--|--|--|--|--|
|           | Heart IVA Cx R T |     |     |     |     |  |  |  |  |  |
| All beams | 2.6              | 7.4 | 2.3 | 1.8 | 2.4 |  |  |  |  |  |
| Lit T     | 0.2              | 0.4 | 0.2 | 0.2 | 0.2 |  |  |  |  |  |
| IMC p+e   | 0.6              | 3.1 | 0.4 | 0.3 | 0.5 |  |  |  |  |  |
| TGs       | 1.9 3.9 1.7 1.4  |     |     |     |     |  |  |  |  |  |

Lit T = Tumoral bed IMC = Internal mammary chain p = photon beam e = electron beam TGs = tangentials

TGs have the major contribution to the mean dose for each structure

TGs and IMC contribute with similar proportions to the IVA mean dose



#### 3. Which beam is responsible for high doses?

|           | Maximal dose (Gy) |                   |     |     |     |  |  |  |  |  |  |  |
|-----------|-------------------|-------------------|-----|-----|-----|--|--|--|--|--|--|--|
|           | Heart             | Heart IVA Cx R TC |     |     |     |  |  |  |  |  |  |  |
| All beams | 28.1              | 22.0              | 2.7 | 2.6 | 2.7 |  |  |  |  |  |  |  |
| Lit T     | 2.3               | 1.0               | 0.3 | 0.3 | 0.3 |  |  |  |  |  |  |  |
| IMC p+e   | 22.4              | 14.0              | 0.6 | 0.5 | 0.6 |  |  |  |  |  |  |  |
| TGs       | 17.7              | 11.1              | 1.9 | 1.9 | 1.9 |  |  |  |  |  |  |  |

↗ IMC is responsible for the maximal dose to the heart and the IVA whereas it is the TGs for the other structures



#### 3. Which beam is responsible for high doses?



OF HYBRID COMPUTATIONAL PHANTOMS IN RADIOTHERAPY P01 FOR HEART AND CORONARIES DOSIMETRY

# 4. How is the dose distribution along the coronaries ?



 $\rightarrow$  These 3D maps were technically developped at our lab.

#### Hot spot location relative to the beams



PHANTOMS IN RADIOTHERAPY PO. FOR HEART AND CORONARIES DOSIMETRY

# 5. Is the mean heart dose a good surrogate for IVA doses?

|                                           | PatAnatomium | Pat01 | Pat02 | Pat03 | Pat04 | Pat05 | Pat06 | Pat07 | Pat08 | Pat09 | Pat10 |    |       |         |
|-------------------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|-------|---------|
| D <sub>IVA</sub><br>(Gy)                  | 17.1         | 7.1   | 5.5   | 6.1   | 7.5   | 10.9  | 7.6   | 8.6   | 8.2   | 7.3   | 5.4   |    |       |         |
| D <sub>Heart</sub><br>(Gy)                | 2.8          | 2.8   | 2.6   | 2.5   | 2.6   | 2.7   | 2.7   | 2.6   | 2.7   | 2.7   | 2.5   | μ  | σ     | σ/μ     |
| $\frac{D_{\text{IVA}}}{D_{\text{HEART}}}$ | 6.2          | 2.6   | 2.1   | 2.5   | 2.9   | 4.0   | 2.8   | 3.2   | 3.1   | 2.7   | 2.2   | 2. | 8 0.6 | 5 21.0% |

#### The ratio has a mean of 2.8 and a dispersion of 21%

POTENTIAL OF HYBRID COMPUTATIONAL PHANTOMS IN RADIOTHERAPY FOR HEART AND CORONARIES DOSIMETRY

## Conclusion

Hybrid computational phantoms allow to imagine a lot of interesting dose studies with their flexibility

- The IVA receives high dose compared with the other main coronaries in left-side breast RT
- Interesting analysis of the coronary doses using a dose map
- It appears that the hot spot is generally located on the middle of the IVA. It's a coronary location not seen in the RT CT images.
- The IVA mean dose is ~3 fold the heart mean dose. With only differences in terms of coronary topology, there is 21% of dose dispersion on the IVA mean dose from a model to another

## Perspectives

- Now, we have to study the dose sensitivity to the thoracic morphology
- With these studies of sensitivity, we will have an idea of the coronary dose uncertainties in the retrospective studies due to the anatomical approximation
- Another part of our research will be to create model with the thoracic CT and the heart CT of a same patient
- We expect to give some elements to improve the treatment planning of the breast cancer and the dose-effect relationship establishment



### Thanks

## ありがとう

Merci

POTENTIAL OF HYBRID COMPUTATIONAL PHANTOMS IN RADIOTHERAPY FOR HEART AND CORONARIES DOSIMETRY

