

Nuclear Data

Michael Dunn Nuclear Data Group Leader Nuclear Science & Technology Division

Medical Physics Working Group Meeting October 26, 2005

Cross Section Measurement Capabilities

Facility		United	Europe			
Parameters	ORELA	LANSCE	IPNS	RPI	GELINA	n_TOF
Source	e ⁻ linac	p spallation	p spallation	e ⁻ linac	e ⁻ linac	p spallation
Particle E (MeV)	140	800	450	>60	120	20000
Flight Path (m)	10-200	7-55	~6-20	10-250	8-400	185
Pulse Width (ns)	2-30	125	40	15-5000	1-2000	7
Max Power (kW)	50	64	6.3	>10	11	45
Rep Rate (Hz)	1-1000	20	30	1-500	Up to 900	0.278-0.42
Best Intrinsic Resolution (ns/m)	0.01	3.9	2.0	0.06	0.0025	0.034
Neutrons/s	1 × 10 ¹⁴	7.5 × 10 ¹⁵	8.1 × 10 ¹⁴	4 × 10 ¹³	3.2 × 10 ¹³	8.1 × 10 ¹⁴

ORELA Measurement Capabilities

- **>** Unique measurement facility in U.S.
- High flux (10¹⁴ n/sec) => gram-sized, affordable samples
- Excellent resolution (Δt=4-30 ns) => good S/N facilitates better evaluations
- "White" neutron spectrum from E_n ~ 0.01 eV - 80 MeV => reduces systematic uncertainties
- Measurement systems well understood => very accurate data.
- Simultaneous measurements => (n,γ) , (n,α) , (n,n'), and σ_{total} experiments at the same time on different beam lines
- Electron, γ-ray, and neutron irradiations possible

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

ORELA Accelerator

Selected LANSCE Measurement Capabilities

GEANIE (n,xγ)

FIGARO (n,xn+γ)

Fission

LSDS

Double Frisch-gridded fission chamber; also standard fission ion chamber

Total cross sections

- Bibliography databases CINDA, NSR
- Experimental database CSISRS
- Evaluated database ENDF
- Atlas of Neutron Resonances (New)
- Nuclear Reaction Model Code Empire

Nuclear Structure and Decay Databases Nuclear Structure and Decay Tools Nuclear Reaction Databases Nuclear Reaction Tools Bibliography Databases Networks and Links About the Center Publications <u>http://www.nndc.bnl.gov/</u> Meetings

ENDF/B Data Overview

File (MF)	Description	File (MF)	Description
1	General Information	10	Cross Sections for the Production of Radioactive Nuclides
2	Resonance Parameters	11	General Comments of Photon Production
3	Neutron Cross Sections	12	Photon Production and Multiplicities and Transition Probability Arrays
4	Angular Dist. of Secondary Particles	13	Photon Production Cross Sections
5	Energy Dist. of Secondary Particles	14	Photon Angular Distributions
6	Coupled Energy-Angle Dist. of Secondary Particles	15	Continuous Photon Energy Spectra
7	$S(\alpha, \beta)$ Scattering Law Data	23	Photon Interaction Cross Sections
8	Radioactive Decay and Fission Product Data	27	Atomic Form Factors or Scattering Functions
9	Multiplicities for Production of Radioactive Nuclides	30 - 40	Data Covariance Files

Available ENDF/B Data

- ENDF/B-IV released 1975
- ENDF/B-V released 1979
- ENDF/B-VI released 1990

ENDF/B-VII scheduled for release December 2005

ENDF/B-VI Release 7

Evaluation Type	Number*
Radioactive Decay / Photo-atomic Interaction Evaluations	1204
Incident Neutron Evaluations	520
Thermal S(α , β) Evaluations	21
Total	1745
*Includes Multiple Releases of Same Nuclide	

Nuclear Data for Medical Applications

- Photon production and transport
 - Medical accelerator head converts electron beam into x-rays
 - transport electrons high-Z material
 - production of photons and transport in accelerator
 - Beam modifiers providing tailored beam to patient
 - Radiation transport within patient

➢ Electron

- High-energy x-rays set electrons in motion and electrons deposit dose
- transport—electron energy loss and angular deflections
- Evaluated Electron Data Library (EEDL)—Z (1-100), interaction, energy loss, etc.
- Available in ENDF/B-VI Release 8

> Proton

- Incident proton evaluations available with ENDF/B-VI Release 6 and later
- Evaluations based on GNASH model calculations and EDA R-matrix code calculations

Photoneutron

- Absorption of photon by nucleus excite number of resonances—GDR dominates energy range of interest for medical accelerators
- Neutron generation in medical accelerators and materials in therapy facilities
- Fairly comprehensive (γ , n) data available—prepared during 1994—2001 timeframe
 - IAEA photonuclear data library 188 nuclide evaluations
 - Contributors: LANL, KAERI, JAERI, CNDC, IPPE, and CDFE

> Neutron

- Extensive database of measured and evaluated neutron transport and production data
- Concentrated effort devoted to improving data and providing cross-section uncertainty data—important for sensitivity/uncertainty analyses

Radiation Dose resulting from Material Activation

- Work by Rawlinson, Islam, and Galbraith—Med Phys, Vol 29, April 2002
 - Varian Clinac 21 EX accelerator Princess Margaret Hospital, Toronto
 - Principle isotopes contributing to therapist dose in treatment room:

Isotope	Material source	Half- life	Reaction	Principle γ energies (keV)
²⁸ AI	Treatment couch	2.3 m	²⁷ Al(n,γ) ²⁸ Al	1780
⁵⁶ Mn	Steel	2.6 h	⁵⁵ Mn(n,γ) ⁵⁶ Mn	847, 1811, 2113
²⁴ Na	Concrete	15 h	²³ Na(n,γ) ²⁴ Na	1369, 2754
¹²² Sb	Lead shielding in accelerator head and gantry	2.8 d	¹²¹ Sb(n,γ) ¹²² Sb	511, 564

Radiation Dose resulting from Material Activation

- Study by Rawlison, et. al.
 - Importance of thermal (n, γ) reactions and cross-section data for modeling
 - High neutron capture materials anywhere in treatment room are potential sources
- Variation in facility construction/operation impact occupational dose
 - materials present—variation in concrete constituents
 - Types of treatment—IMRT, conventional radiation therapy
 - Amount of operation—number of treatments, duration, etc.
- Not sure that activation effects have been considered in treatment facility (room and equipment) design—may be changing with newer facility construction??

Nuclear Data Observations

- Effect of uncertainties in nuclear data and model parameters is not completely understood relative to the final calculated dose to the patient:
 - Uncertainties in cross-section data
 - Uncertainties in tissue composition and density
 - Uncertainties in accelerator design parameters
- What level of cross-section data accuracy needed for medical physics computational modeling?
 - Benchmark computational models & data against measurements at various treatment facilities
 - National laboratories have extensive experience in this type of work
- Sensitivity/uncertainty (S/U) analyses can be used to investigate impact of uncertainties on calculated quantities of interest
 - ORNL has developed S/U analysis tools based on adjoint perturbation theory
 - Primarily used for neutron transport
 - Recently performed S/U analyses for coupled neutron-gamma shield design work
- U.S. has integrated nuclear data program to respond to emerging application needs

