Computational benchmarks - proposal -

Robert Jeraj

Departments of Medical Physics, Human Oncology and Biomedical Engineering University of Wisconsin - Madison, WI

Increased importance of computer modeling

- High accuracy of all the steps in imaging-therapy chain is required
 - Increased role of computer simulations in medical physics (e.g., small field dosimetry)
 - Increased technological complexity (e.g., IGRT integration of imaging and therapy)
- Further increase in treatment complexity expected
 - Treatment adaptation
 - Multi-modality imaging in treatment planning and treatment evaluation

Accuracy of treatment will depend more and more on the accuracy of computer modeling in both, imaging as well as treatment delivery !

Specific Aims

 Development of rigorous benchmarking procedures

- Compilation of the existing benchmarks
- Design of new benchmarks
- Code verification on the benchmarks

Development of rigorous benchmarking procedures

- Detailed description of the benchmark
 - Overview of the experiment
 - Experimental configuration
 - Description of material data
 - Supplemental experimental measurements
- Evaluation of experimental data
 - Experimental uncertainties
 - Material uncertainties

Development of rigorous benchmarking procedures

- Benchmark specifications
 - Description of the model
 - Dimensions
 - Material data
 - Environmental data
 - Experimental and benchmark-model values
- Results of sample calculations
- Computer code inputs

Compilation of existing benchmarks

- Classified according to their medical physics applications (can be more than one):
 - Radiation therapy (RT)
 - Imaging (IM)
 - Nuclear medicine (NM)
 - Health physics (HP)
- Some examples:
 - dose distribution on a heterogeneous phantom (RT)
 - CT density phantom (IM)
 - internal dosimetry (NM)
 - MIRD phantoms (HP)
 - dose distributions on the IGRT system (IM-RT)
 - photo-nuclear production during radiation therapy (RT-HP)

Compilation of existing benchmarks

- Classified according to their nature (can be more than one):
 - Theoretical benchmarks (THE): testing consistency of the codes
 - Clinical benchmarks (CLI): testing clinical real world
 problems
 - Experimental benchmarks (EXP): (testing basic input parameters in the codes like cross sections)
- Some examples:
 - pencil beam voxel calculation (THE)
 - electron beam backscattering (CLI)
 - thick-target bremsstrahlung production measurements (EXP)
 - heterogeneous phantom dose calculations (THE) if supported by experiments (THE-EXP)

Microsoft Excel - LitList.xls

EN () 18:43

Ele Edit View Insert Format Tools Data Window Help Adobe PDF

🗄 🗋 🕞 🛃 🖪 🔃 🖤 🚉 | 🅉 🔁 🛍 🗸 🕩 🖛 🖉 🔊 🖬 🗴 🖉 🗎 🖉 🗋 Τahoma

🔞 😂 😂 🦛 🤄 🍳 Mozilla Thun... 🔻 🏙 External beam r...

 Type a question for help
 #

 ▼ 10
 ▼
 B
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 <

: 🔁 🔁 🗸

A1

▼ X √ fx Medical Physics Computational Benchmarks - Candidates

_	A	В	C	D	E	F	G	
	Med	ical Physics Computatio	onal Benchmarks	- Candidates				
2		Author(s)	Reference	Title	Codes	Subject matter	Classif.	
3	1	Bogner, Scherer et al.	Strahlenther. Onkol. 2004; 180:3405-350	Verification of IMRT: Techniques and Problems	XVMC/VEF	Investigation of diff. radiographic films and dose probes for their suitability	THE+EXP	
4	2	Bohm et al.	Med. Phys. 30(4), April 2003	Brachytherapy dosimetrry of125I and 103Pd sources using an updated cross section library for the MCNP transport code	MCNP/MCNPX +improv. cr. sec. lib.	MC benchm. of brachytherapy single source character. with new cr. sec. lib.	CLI+THE	
5	3	Borg, Kawrakow, Rogers, Seuntj.	Conf. Proc. of 22nd EMBS Jul. 23-28 2000	Experimental verification of EGSnrc MC calculated ion chamber response in low energy photon beams	EGSnrc	Experim. verification - comparison of calc. & meas. response of ionization chamber	THE+EXP	
6	4	Carrasco et al.	Med. Phys. 31(10), October 2004	Comparison of dose calc. algorithms in phantoms with lung equivalent heterogenities under conditions of lat. electronic disequilib.	PENELOPE	PDD benchmark meas. with lung phantom TLDs, ion chamber, MC- & TPS-simulations	THE+EXP	
7	5	Carrier et al.	Med. Phys. 31(3), March 2004	Validation of GEANT4, an object-oriented MC toolkit, for simulations in medical physics	GEAN14 comp. to MCNP, EGS, EGSnrc	Comp. of GEANT4 with other codes and simulation data of multilayer phantom	THE	
8	6	Chetty, Bielajew et al.	Phys. Med. Biol. 47(2002) 1837-51	Exp. Validation of the DPM MC code using minimally scattered electron beams in heterogeneous media	DPM + MCNP4B modelling	(Elec.) Benchm. against meas. PDDs & ion chamber meas. in homo- & heterog. media	EXP	
9	7	Chetty, Bielajew et al.	Med. Phys. 30(4), April 2003	Photon beam relative dose validation of the DPM MC code in lung- equivalent media	DPM + BEAM modelling	(Phot.) Validation at 6 and 15MV in heterogeneous media (lung phantom)	EXP	
0	8	Chibani & Li	Med. Phys. 29(5), May 2002	MC dose calculations in homogeneous media and at interfaces: A comparison between GEPTS, EGSnrc and measurements	GEPTS comp. to EGSnrc, MCNP	Comp. with other codes, simul. & meas. in homo- & heterog. media / at inerfacaces	THE+EXP	
11	9	Chibani & Li	Med. Phys. 30(1), January 2003	IVBTMC, a Monte carlo dose calculation tool for intravascular brachytherapy	IVBTMC (based on EGSnrc)	Verification against other codes (EGSnrc & MCNP) and exp. using radio-chromic films	THE+EXP	
2 .	10	Chow et al.	Med. Phys. 30(10), October 2003	Comparison of dose calculation algorithms with Monte Carlo methods for photon arcs	MC, PBeamKernel, CCC, EGS/DOSXYZ	calc. of 3D dose distrib. In different phantoms; TPS and IC measurements	THE+EXP	
3	11	Cygler, Ding et al.	Med. Phys. 31(1), January 2004	Evaluation of the first commercial MC dose calculation engine for electron beam treatment planning	VMC++ (Kawrakow)	Calc. vs. meas. data in homo- & heterogen. phantoms at diff. SSDs and gantry angles	THE+EXP	
4	12	Ding	Med. Phys. 29(11), November 2002	Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam	EGS4/DOSXYZ EGSnrc/DOSRZnrc	Calculations vs. IC-measurements of DD	THE+EXP	
15	13	Doucet, Olivares et al.	Phys. Med. Biol. 48(2003) 2339-2354	Comparison of measured and MC calc. dose distributions in inhomogeneous phantoms in clinical electron beams	XVMC & EGSnrc	Irradiation with 9 and 15 MeV beams, TLD measurements in solid water phantoms	THE+EXP	
I6 ·	14	Faddegon & Rogers	Nuc.Instr.Meth.Phys. A327 (1993) 556-565	Comparison of thick-target bremsstrahlung calculations by EGS4/Presta and ITS 2.1	EGS/Presta ITS Version 2.1	Calc. of spectral distr. without meas. in 10-20 MeV beams of Be, Al and Pb targets	THE	
7	15	Faddegon, Ross & Rogers	Med. Phys. 18(4), Jul./Aug. 1991	Angular distribution of bremsstrahlung from 15MeV electrons incident on thick targets of Be, Al and Pb	EGS4	Measurements vs. calculation of bremsstrahlung spectra at certain angles	THE+EXP	
8	16	Flampouri, Verhaegen et al.	Phys. Med. Biol. 47(2002) 3331-49	Optimization of accelerator target and detector for portal imaging using MC simulation and experiment	EGS4/BEAM	Sim. & experim. of image contrast to max. image quality - test diff. hardw. combos	THE+EXP	
3	17	Fragoso, Nahum, Verh. et al. \ Sheet1 / Sheet2 / Sheet :	Med. Phy. 30(6), June	Incorporation of a combinatorial geometry package and improved	GenUC (generic	Incorporation/Implementation of GenUC and	THE	

Computational ...

C:\Robert\Work...

Microsoft Excel -...

🛃 start

EndNote 7 (Bld 98)

File Edit References Tools Window Help

D 🛩	🕹 🕹 🖻 🖻 🗛 🕸 🟉	💞 💩 🤅	🖹 🏝 🛃 🛃 Author-Date 💉 🦎 Plain Font 🔹 Plain Size 🔹 Β Ι Ψ Ρ Α¹ Α ₁ Σ								
🚺 мс	benchmarks.enl										
0	Author	Year	Title	URL ^							
	Faddegon	1990	Forward-directed bremsstrahlung of 10- to 30-MeV electrons incident on thick targets of AI and Pb	http:/							
	Faddegon	1991	Angular distribution of bremsstrahlung from 15-MeV electrons incident on thick targets of Be, AI, and Pb	http:/							
	Nilsson	1992	A study of interface effects in 60Co beams using a thin-walled parallel plate ionization chamber								
	Ma	1993	Dose conversion and wall correction factors for Fricke dosimetry in high-energy photon beams: analytical model an								
	Luxton	1994	Comparison of radiation dosimetry in water and in solid phantom materials for I-125 and Pd-103 brachytherapy sou								
	Ma	1995	Calculations of ion chamber displacement effect corrections for medium-energy x-ray dosimetry								
	Rogers	1995	BEAM: a Monte Carlo code to simulate radiotherapy treatment units								
	Kawrakow		3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC)								
	Mobit		The quality dependence of LiF TLD in megavoltage photon beams: Monte Carlo simulation and experiments								
	Nilsson		Wall effects in plane-parallel ionization chambers								
	Fippel	1997	Electron beam dose calculations with the VMC algorithm and the verification data of the NCI working group								
	Ma		Accurate characterization of Monte Carlo calculated electron beams for radiotherapy								
	Mobit	1997	An EGS4 Monte Carlo examination of general cavity theory								
	Love		Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses								
	Jeraj										
	Siebers										
	Verhaegen	1999									
	Wang	1999	Experimental V 👦 🍘 Reference Type: Journal Article 🗸								
	Mercier		Modification a								
	Sheikh-Bagheri			~							
	Verhaegen										
	Zaidi		Comparative e incident electron) along the beam axis for electrons of 10-, 15-, 20-, 25-, and 30-MeV incident energy. T								
	Nariyama	2001	Dose measure spectra have a 220-keV low-energy cutoff. The targets were cylinders with nominal thicknesses of 110%	6							
	Reynaert	2001	Self-absorption of the electron CSDA range. A thin transmission detector, calibrated against a toroidal current monitor,								
	Sempau	2001	Monte Carlo s was placed upstream of the target to measure the beam current. The spectrometer was a 20-cm diame	ter							
	Verhaegen	2001	Monte Carlo c by 25-cm-long cylindrical Nal detector. Measured spectra were corrected for pile-up, background,								
	Wang	2001	Monte Carlo d detector response, detector efficiency, attenuation in materials between the target and detector and the								
	Chetty	2002	Experimental v collimator effect. Spectra were calculated using the EGS4 Monte Carlo system for simulating the radiation	on							
	Chibani	2002	Monte Carlo d transport. The simulation model included the small amount of material upstream of the target. This mater	rial							
	Ding	2002	Dose discrepa contributed about 40% of the spectrum, but its presence or absence had little effect on the calculated	<u> </u>							
<				>							
Faddegon, B. A., C. K. Ross, et al. (1990). "Forward-directed bremsstrahlung of 10- to 30-MeV electrons incident on thick targets of AI and Pb." Med Phys											
	17 (5): 773-85.			290							
Chowin	a FE out of FE references		A Liida Dessii	000							
Showing 65 out of 65 references.											
💾 s	start 🔰 🙆 😂 🗳) 🔄	🖄 Inbox - Mozilia T 🛛 🖸 2 Microsoft Of 🔻 🏠 C:\Robert\Work 📓 Microsoft Excel 🔀 EndNote 7 (Bid 🛛 🛛 EN 🔇 🕮 💑	18:57							

Design of new benchmarks

- Testing transport mechanics of the codes:
 - modeling of electron transport in optically thin regions
 - modeling in highly heterogeneous materials
- Testing transport parameters of the codes:
 - pencil beam calculations in different materials
 - bremsstrahlung differential cross sections
 - electron backscattering calculations
 - ionization chamber measurements
 - detector simulations

Design of new benchmarks

- Preparation of the representative clinical benchmarks:
 - external beam radiation therapy
 - brachytherapy
 - internal dosimetry
 - shielding problems
- Imaging benchmarks:
 - image reconstruction
 - multi-imaging modality phantoms, especially CT, PET

Code verification

- All of the computational benchmarks will be modeled with at least one of the code (typically MCNP(X) or EGSnrc)
- Verification with as many as possible codes
- Involvement of large general (medical) physics community
- National and international effort
- Agreements have been achieved with the main code developers (input code verification)
- Depository of code inputs

The most needed areas (after a short brainstorming with Wayne)

 Experiments, experiments, experiments

Patient dosimetry

- CT-to-code geometry conversion
- Interface dosimetry
- Non-tissue-like materials (high Z)

Next steps

Grant application
Connection with other national/international efforts
Identify active participants
Do the job!