

MEDICAL APPLICATION OF DOORS

R. A. Lillie Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, Tennessee, 37831

(865) 574-6083 lilliera@ornl.gov

Presented at Computational Medical Physics Working Group Meeting October 26, 2005

Doors is a Collection of Codes Anchored by ANISN, DORT, & TORT

- Discrete Ordinates Codes
 - ANISN One-Dimensional
 - DORT Two-Dimensional
 - TORT Three-Dimensional
- Semi-Analytic Uncollided Flux & 1st Collision Source Codes and Last Flight Estimation Code
 - GRTUNCL & GRTUNCL3D and FALSTF
- Coupling (Splicing) Codes
 - Torsed (DORT to TORT)
 - Torset (TORT to TORT)
- Graphics Codes
 - ISOPLOT (Pre- and Post Processing), ASPECT, etc.

Simplistic Discrete Ordinates

 $H(\rho)\Phi(\rho) = S(\rho)$

ρ = phase space variable = (x,y,z,E,Ω,t)

- $\Phi(\rho)$ = particle flux at ρ
- $S(\rho)$ = source particle density at ρ
- H(ρ) = Boltzmann integral-differential operator
- $H(\rho)\Phi(\rho)$ = particle losses at ρ (collisional loss and leakage from system)

[Above equation is a particle balance at ρ]

Simplistic Discrete Ordinates (cont. 1)

Discretize Balance Equation:

Subdivide angular domain into a finite number of directions and weights (quadrature set)

$$\sum_{m=1}^{M} \Phi_{m} w_{m} = \int_{\Omega} \Phi(\Omega) d\Omega, \ \Phi_{m} = \Phi(\Omega_{m}), \ w_{m} = \frac{1}{4\pi} \int_{\Delta \Omega_{m}} \Omega d\Omega$$

Subdivide energy domain into finite number of energy groups (multigroup approximation)

$$\sum_{g=1}^{G} \Phi_g = \int_E \Phi(E) dE, \quad \Phi_g = \int_{E_{g+1}}^{E_g} \Phi(E) dE$$

Simplistic Discrete Ordinates (cont. 2)

Subdivide spatial domain into a finite number of cells (voxels)

Introduce some type of spatial differencing (and interpolation) scheme to obtain a coupled set of M x G x N algebraic equations

Invert H iteratively and solve for Φ :

$$\Phi(\rho) \cong \Phi_{m,g,n} = \overline{H}^{-1}(\rho)S(\rho)$$

Dose Calculation 1) Fold flux with flux-to-dose factors - EASY 2) Calculate from energy balance - DIFFICULT

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

BNCT Facility Design Optimization

- BNCT is a bimodal therapy for treating tumors in particular glioblastoma multiforme (GBM)
 - Patient given suitable boronated pharmaceutical that preferentially seeks malignant tissue
 - Tumor absorbs more than healthy brain tissue because of breakdown of blood-brain-barrier
 - Tumor region irradiated with epithermal or near epithermal neutron beam to generate thermal flux in diseased tissue
 - Due to high ¹⁰B capture cross section thermal neutrons are readily absorbed yielding ⁴He & ⁷Li
 - ⁴He & ⁷Li range out over cell dimensions leading to destruction of tumor tissue

TSR-II Brute Force Optimization (Ingersoll, Slater, and Williams)

ANISN Calculations

- Optimal filter
 - 0.8 m Al/AlF3
 - 92 mm sulfur
 - 0.2 mm cadmium
 - 0.1 mm bismuth
- DORT Calculations
 - Collimator
 - 0.1 m lithiated polyethylene

One-Dimensional Gradient Optimization (Karni, Greenspan, Vujic, and Ludewigt)

- Employed SWAN optimization code to identify suitable source assemblies for BNCT
 - SWAN uses gradient information to calculate material replacement effectiveness functions (REF's)
 - REF of material j relative to material k = change in a performance factor due to changing material j by equal amount of material k at same location
 - SWAN based on perturbation theory approach
 - Requires calculation of both forward and adjoint fluxes
- Optimization of tumor/healthy tissue dose ratio
 - Ratio REF = numerator EF denominator EF
 - All fluxes calculated with ANISN

Multi-Dimensional Gradient Optimization (Lillie)

- Three-dimensional model of patients head (TORT)
 - Calculate adjoint leakage due to healthy tissue KERMA
 - Adjoint leakage due boron loaded tumor KERMA
- Two-dimensional model of beam-tube-filter geometry (DORT)
 - Forward flux due to radiation source
 - Adjoint fluxes due to above adjoint leakages
- Calculate gradient of dose ratio with respect to filter materials
- Estimate new filter composition using gradient
- Repeat DORT calculations with new filter,

Multi-Dimensional Gradient Optimization (Lillie)

- Neutron Adjoint Leakage
 - TKL/BTL > 1.0 only between 100 eV & 180 keV
 - Maximum TKL/BKL from 10 to 40 keV (TKL/BKL = 1.33)
- Maximum Tumor to Healthy Tissue Dose Ratio = 1.33

Multi-Dimensional Gradient Optimization (Lillie)

- Tumor dose increases
 0.05 to 0.34
- Healthy tissue dose increases 0.06 to 0.29
- Dose ratio increases 0.78 to 1.17
- Optimization increases dose ratio from 59% to 88 % of maximum possible dose ratio

Lower Leg Dose Comparison (Ingersoll, Slater, Williams, Redmond, and Zamenhof)

- Lower leg voxel model built from CT scans
 - TORT 15,782 voxels
 - MCNP 11,025 voxels
- TORT results affected?
 - ENDF data (V or VI) no
 - Theta weight yes
- MCNP results affected (better agreement)?
 - S(α,β) kernels yes
 - Histories $3 \rightarrow 10 \text{ M}$ yes

Lower Leg Dose Comparison (Ingersoll, Slater, Williams, Redmond, and Zamenhof)

Better than 5% agreement found in more than

95% of comparable voxels

(not all TORT voxels in MCNP model)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Phantom Dog Head Comparison (Wheeler and Nigg)

- Irradiated lucite dog head phantom at BMRR
- Activated copper-gold alloy wires
 - thermal flux measured separately from total
- Compared measured thermal flux with that calculated using
 - Monte Carlo (rtt_MC INEL)
 - Deterministic (TORT ORNL)

Phantom Dog Head Comparison (Wheeler and Nigg)

Top View

Side View

Mesh Representation of Dog Head in TORT Model

1 cm rectangular mesh - 32x16x22 x,y,z mesh intervals

S₈ angular quadrature (96 angles), BUGLE80 47 neutron-22 gamma groups

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Phantom Dog Head Comparison (Wheeler and Nigg)

BMRR power 2.9 MW

- Peak thermal flux
 - Measured (10%)
 1.91 x 10⁹ n/cm²•s
 - rtt_MC 2.13 x 10⁹ n/cm² • s
 - TORT
 2.02 x10⁹ n/cm² s
- TORT 650 min.
- rtt_MC 196 min

MCNP and TORT Simulation Model (Peplow and Lillie)

Comparison of Multigroup MCNP and TORT Dose Profiles (y = 10.25 cm, z =10.25 cm) (Peplow and Lillie)

Multigroup P₃ Scattering MCNP & TORT Dose Contours (Perpendicular to Beam, x = 9.75 cm) (Peplow and Lillie)

Scale

9.5 cm < x < 10.0 cm

TORT

MCNP

Voxel Number

Discrete Ordintates vs Monte Carlo Flux Transverse Profiles on a Mid-plane Coronal Slice halfway between CT Isocenter and Beam Exit

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Voxel Number

Discrete Ordintates vs Monte Carlo Energy Deposited Transverse Profiles on a Mid-plane Coronal Slice halfway between CT Isocenter and Beam Exit

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MC Standard Deviations

Fractional Frequency Distribution of Voxel Energy Deposited Differences between Discrete Ordinates and Monte Carlo divided by MC Standard Deviation

EGSnrc

TORT (p3 scattering)

TORT (p5 scattering)

Energy Deposited Sagittal Profiles

blue: 0.1-1%, green: 1-10%, yellow: 10-50%, orange: 50-90%, and red: 90-100% of max

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

CPU Times Required for Discrete Ordinates and MC Calculations

Code	Calculation	CPU Time (minutes)
EGSnrc	Photon Flux	88
	Energy Deposited	5000
TORT ^a	P ₃ 1 iteration	23
	P ₃ 2 iteration	35
	P ₃ fully converged	185
TORT ^a	P ₅ 1 iteration	62
	P ₅ 2 iteration	97
	P ₅ fully converged	570

^aIncludes GRTUNCL3D CPU times of 5 and 12 minutes for P₃ and P₅ calculations, respectively.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Summary

- ANISN & DORT used for BNCT facility design primarily filter optimization
 - Need fluence everywhere to obtain gradiants (difficult to do using Monte Carlo
- TORT
 - Lower Leg (neutrons) Excellent agreement with Monte Carlo calculated dose rates
 - Suitable for anatomical voxel based models
 - Significantly less computational cost (single processor)
 - Phantom dog head (neutrons) Very good agreement with measured thermal fluxes
 - Human Phantom Model (photons) Good agreement using higher order scattering and only two iterations (reduced computation time)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

25