Auger-Electron Emitters (AEE) for Targeted-Intercellular Therapy

Saed Mirzadeh

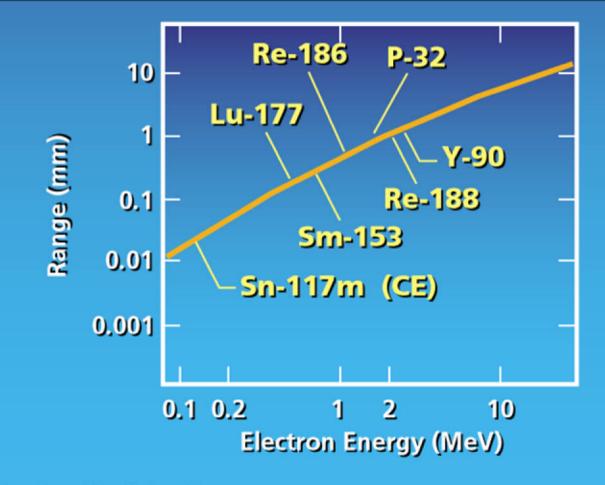
Nuclear Medicine Program Nuclear Science and Technology Division Oak Ridge National Laboratory (ORNL) Oak Ridge, TN

OCTOBER 25, 2005

Rational

- The biological effects of AEE radionuclides can be as severe as those from α-emitting radionuclides – decay energy may be confined to a single cell
- Biological damage from AEE is highly dependent on the location of the decay site within the cell.
- Radio-Biological Equivalence (RBE) of AEE depends heavily on whether the nuclides are actually incorporated into cellular DNA or not
- Radiological risk from AEE may have been underestimated lack of appropriate Dosimetry

Difficulties


 Decay energy from AEE are typically 1000 fold less than that from α-emitting radionuclides – consequently 1000 fold more AEE in required

 AEE need to be internalized into cells -- not very effective on cell surface

 Real Bottle-neck: selective *in-vivo* delivery of AEE to cells

Range of Electrons in Soft Tissue (Maximum Beta Energy)

<u>OTTAL</u>

ORNL NUGlear Medicine Program ORNL 2000-06514a/tra Depth of Radiation Penetration Required Depends Upon How Close We Can Approach the Cellular Target Regions

 Beta particles – up to 3 MeV – > 1 mm maximum – 50-250 cell diameters – "Cross Fire" Effect

- Alpha particles 6-8 MeV 5-10 cell diameters
- Auger electrons < 10 angstrom range
- Nuclear targeting would be most effective

Estimated Energy Deposited from Auger Electrons in 5 mm Speroid

PLATINUM-195m	2000 eV
IODINE-125	1000 eV
INDIUM-111	450 eV

(FROM MARIANI AND BODEI, JNM, 2000)

ORNL Nuclear Medicine Program

ORNL 2003-01931/rra

Radionuclides Emitting Secondary Electrons for Intercellular Therapy

Radion	uclide	Half-	Emiss-	Q	<ee></ee>		Εγ	Daughter
(Production)		life	ion	(keV)	(keV)	Ne/Nt	keV (%)	Radioisotope
¹⁰³ Ru	(R)	30.4 d	β	763	41.7	?	497 (86)	^{103m} Rh (56.1 m)
¹⁰³ Pd	(R/A)	17.0 d	EC	546	42.7	7.4	357 (0.02)	^{103m} Rh (56.1 m)
^{103m} Rh	(R)	56.1 m	ΙΤ	43	37.5	5.7	40 (0.07)	¹⁰³ Rh (stable)
¹¹¹ In	(A)	2.8 d	EC	850	33.9	7.2	171 (90) +	¹¹¹ Cd (stable)
123	(A)	13.2 h	EC	1200	27.6	14	159 (83)	¹²³ Te (10 ¹³ y)
125	(R)	59.4 d	EC	178	17.9	23	35 (6.7)	¹²⁵ Te (stable)
^{193m} Pt	(R)	4.33 d	π	150	130	22	135 (0.11)	¹⁹³ Pt (50 y)
^{195m} Pt	(R)	4.02 d	ΙΤ	260	175	36	99 (11)	¹⁹⁵ Pt(stable)
^{195m} Hg	(A)	1.73 d	IT (54%) EC(46%)	176 1520	140	15	262 (32) 560 (7.5)	¹⁹⁵ Hg (9.5 h) ¹⁹⁵ Au (183 d)
¹⁹⁵ Hg	(A)	9.5 h	EC	1520	61.3	23	780 (7.0)	¹⁹⁵ Ag (185 d)
^{197m} Hg	(R/A)	23.8	IT(93%) EC (7%)	299 600	214	30	140 (34)	¹⁹⁷ Hg (2.67 d)
¹⁹⁷ Hg	(R/A)	2.67 d	EC	600	57	23	191 (0.6)	¹⁹⁷ Au (stable)

Summary and Conclusions

- Broad interests in use of Auger-electron emitters for cancer therapy at cellular level
- Difficulty associated with delivery of required energy by AEE for killing a cell
- Very high specific activity is essential
- Mercury 197m and 197G are attractive candidates
- It is possible to produce high specific activity ^{197m&g}Hg in reactor (10% hot atoms) and carrier-free in accelerator
- Chemistry of attaching Hg to biological molecules is well studied

ACKNOWLEDGEMENTS

Oak Ridge National Laboratory Managed by UT Battelle for U.S. Department of Energy under Contract DE-AC05-00OR22725

