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Overview

• The University Perspective – LSU
• Deterministic transport computations

– Photon production spectrum in LINAC
– External beam dose delivery

• Direct prostate dosimetry computations
– Based on PET/CT image data

• Micro dosimetry computations
– Cellular and DNA scales



University Perspective - LSU

• MEDP and HP programs
– MEDP: first year on campus, second year at clinic
– HP: mostly academic training, some at clinic

• Initially from Nuclear Eng background
– MEDP since ‘83 but substantially revised in ‘98
– Strong foundation in transport computations
– MEDP curriculum is undergoing accreditation

• Currently three faculties, cooperating with
adjuncts at local cancer clinic
– Focus on therapy rather than imaging
– Mix of computational and experimental projects
– Radiobiology research in cooperation with Biology dp



Deterministic Computations

• The role of deterministic methods when MC is
the “gold standard”
– New treatment modalities with complex geometries
– Details of dose distribution require many tally sites

and long running times
– Deterministic is a rigorous approach

• It can provide detailed phase-space
• Can be superior alternative to MC, especially for

optimization problems
• But, limited ability in complex geometries

• Two projects in this field



Coupled Electron-Photon Transport for
Photon Production in LINAC Targets

• Electron beam incident on targets
– Different electron energies and target materials

• Coupled electron-photon cross sections
generated with CEPXS

• Target modeled as 1D slab with ONEDANT
discrete ordinates code
– Energy and angular distributions compared with

MCNP coupled electron-photon results

• Results used as input to further 3D comps.



LINAC Target - conclusions

• Good agreement with MCNP within the primary
collimator interval of 13.4 deg

• ONEDANT overestimates the peak source strength for
the thickest target due to 1D

• Running time: 2 min vs 2-36 hrs

10 MV Photon Spectrum, 0.0-13.4 Degrees:
3 mm W Target (normalized to unity)
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4 MV Photon Spectrum, 0.0-13.4 Degrees:
0.8 mm W+ 0.2 mm Cu Target (normalized)
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TransMED: Code for Photon transport

• Developed by TransWare from reactor physics code
• 3D method of characteristics in gen. geometry
• Uses MC combinatorial geometry routines for ray

tracing & geometry input
• LSU’s work:

– improved 1st - and 2nd-collision-source calc.
– added analytical calc of Klein-Nishina scatter kernel
– developed routines to

• set up LINAC geometry
• patient anatomy XS from CT image files



Future Areas of TransMED Development

• Improved execution time
– More efficient ray-tracing algorithm
– Optimize memory & I/O management
– Simultaneous solution for multiple beam cases
– Parallel computation on dedicated cluster

• Addition of electron transport
Kerma Profile, Open Field
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Kerma Radial Distribution for Wedged Field
z=80.5cm
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Direct Prostate Seed Dosimetry

• Current limitations in seed dosimetry:
– Brachytherapy seed localization
– Dose computations using point-source approximation

in homogeneous medium
– Aggregate error in dose reconstruction ~ 15%

• New Method: Embedded positron emitter
– Annihilation event distribution is imaged by PET
– Patient tissue XS determined from CT
– Annihilation dose is computed and linked to

therapeutic dose
– Green’s function approach with precalculated kernels
– Dose may be overlaid on anatomical image in minutes



Those perfect seedsThose perfect seeds……

• Non-trivial number crushed or bent
• Non-standard and asymmetric dose

distribution about these seeds

I-125 seed Pd-103 seed



Ideal vs PET-based dose computations
• Best agreement is in 2D acquisition due to

– reduced out-of-plane activity
– Increased FOV in 3D results in more false counts

• Worst discrepancy is at the seed
• Mean discrepancy when MC uncertainty is accounted for is 4%
• Problem: Current PET acquisition protocol cannot take

advantage of eliminated range blurring
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MCNP-calculated energy deposition in x direction based on 2D
acquisition of two seeds. MC uncertainty is ~5%

MCNP-calculated energy deposition in x direction based on 3D
acquisition of two seeds. MC uncertainty is ~5%



Micro- & Nano-Dosimetry Computations

• Observed chromosome changes vary with
different LET of radiation (in quality, not in quantity)

– Charged particle disequilibrium may induce
secondary cancer formation (heritable translocations)

• Computation of DNA damage is limited by poor
understanding of electron transport and charge
exchange at the eV level
– Event-based vs condensed history (kurbuc, moca, pits)

– Some track structure quantities are known for vapor
– XS are based on classical Coulomb trajectory comp.
– No XS data for biologically important materials

• Research need in experimental XS and realistic
code implementation



Thank You


