Applications of PENTRAN using Parallel Clusters For Selected Medical Physics Problems

Glenn E. Sjoden Associate Professor, University of Florida Department of Nuclear and Radiological Engineering

Overview

- Introduction
- PENTRAN features and current status
- Code Benchmarks & Parallel Performance
- Medical Physics Applications
- Brachytherapy, CT, X-ray room simulations
 - Discussion of Models, approach, etc
 - Ordinate splitting (OS)
- Medical Physics Transport Research
- Closing Remarks

3-D Boltzmann Equation

 $(\mu \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y} + \xi \frac{\partial}{\partial z}) \psi_{g}(x, y, z, \mu, \varphi) + \sigma_{g}(x, y, z) \psi_{g}(x, y, z, \mu, \varphi) =$

$$\begin{split} & \sum_{g'=1}^{G} \sum_{l=0}^{I} (2l+1) \ \sigma_{s,g' \to gl}(x,y,z) \left\{ P_{l}(\mu) \phi_{g'l}(x,y,z) + 2 \sum_{k=1}^{l} \frac{(l-k)!}{(l+k)!} P_{l}^{k}(\mu) \cdot \right. \\ & \left[\phi_{Cg'l}^{k}(x,y,z) \cos(k\varphi) + \phi_{Sg',l}^{k}(x,y,z) \sin(k\varphi) \right] \right\} + \frac{\chi_{g}}{k_{0}} \sum_{g'=1}^{G} \nu \sigma_{fg'}(x,y,z) \ \phi_{g',0}(x,y,z) \end{split}$$

Boltzmann Transport Equation

- Track particles traveling in different
 - directions

over a range of <u>energies</u>

In different <u>spatial locations</u> in 3-D

<u>Parallel Environment Neutral-particle</u> <u>TRAN</u>sport

- 3-D Parallel Sn Code
 - by Sjoden & Haghighat
 - X-Y-Z Geometry, anisotropic scatter
- Complete Parallel Decomposition
 - Angular, Energy, Spatial

Space

- Memory is parallel & tuned, minimized (scalable)
- Arbitrary Sn order, Pn order
- Adaptive differencing schemes : DZ -> DTW -> EDW
 - Differencing "adaptive", adapts to spatial mesh
- Discontinuous grids
 - Taylor Projection Mesh Coupling (TPMC)

Numerous Benchmarks performed...

Nuclear and Radiological Engineering

Code Benchmarks and Parallel Performance Metrics

- OECD/NEA Venus-3 3-D PWR Benchmark
- OECD/NEA Kobayashi Benchmark
- Fuel Storage Cask
- Prompt γ-Neutron Activation Analysis (PGNAA) device
- BWR Reactor Simulation
- He-3 Detector System
- HEU Criticality Benchmark
- OECD/NEA MOX 2-D & 3-D Benchmarks
- WG-Pu Homeland Security Detection problem
 - Benchmark in development

OECD/NEA Venus-3 Benchmark

- VENUS-3 Calculation to Experiment (C/E) of 370 <u>experimentally</u> <u>measured</u> neutron reaction rate foils using Ni, In, AI dosimeters
- Reaction rates computed using PENTRAN (P3-S8 26 groupdependent) fluxes
- 95% of C/E's within +/-10%
- 5% of C/E's within +/-15%

OECD/NEA Venus-3 Benchmark

PENTRAN results in good agreement with others
26 Groups, P3-S8, in 84.3 min on 32 SP2 procs

Redicional En OECD/NEA Nuclear Science Publication: "Venus-1 and Venus-3 Benchmarks", 2000)

OECD/NEA Venus-3 Benchmark

Parallel Performance Values

VENUS-3 PENTRAN Parallel Performance study						
No. of	Domain Decomposition	Wall-Clock	Speedup	Efficiency		
processors	Algorithm (A/G/S) ¹	time (min) ²		(%)		
4	4/1/1	551.8	1.00	-		
8	8/1/1	311.9	1.77	88		
16	8/1/2	153.3	3.60	90		
32	8/1/4	84.3	6.54	82		
	No. of processors 4 8 16 32	VENUS-3 PENTRAN PaNo. of processorsDomain Decomposition Algorithm (A/G/S)144/1/188/1/1168/1/2328/1/4	VENUS-3 PENTRAN Parallel PerformaNo. of processorsDomain Decomposition Algorithm (A/G/S)1Wall-Clock time (min)244/1/1551.888/1/1311.9168/1/2153.3328/1/484.3	VENUS-3 PENTRAN Parallel Performance studyNo. of processorsDomain Decompostion Algorithm (A/G/S)1Wall-Clock time (min)2Speedup 144/1/1551.81.0088/1/1311.91.77168/1/2153.33.60328/1/484.36.54		

 10 A/G/S) refers to the number of angular, group, and spatial subdomains 2 Time is obtained in a BATCH mode

OECD/NEA Kobayashi Benchmarks

OECD/NEA Kobayashi Benchmarks

- Dog-Leg Void Problem, Zero Scattering solutions at y=95 cm, z=35 cm (Right)
- Benchmarks: 3-D Pure Absorber, 50% Scatter Cases

• Excellent agreement with benchmark solutions...

Haghighat, Sjoden, and Kucukboayci, 2001

Fuel Storage Cask

 Height 610 cm, O.D. 340 cm, Shell I.D. 187 cm, 162.4 MT, 318,426 fine meshes solved with P3-S12, coupled 22 n/18 γ

PENTRAN Solution, CASK Group 1 (Left), CASK Group 22 (Center), and (Right) A³MCNP model of Cask

PENTRAN, MG-MC dose results differed <5% at tally points 11</p>

Prompt-γ Neutron Activation Analysis (PGNAA) device

Contaminant (Metal)	Difference (calculated-to- experiment)	Experimental Uncertainty	Low Limit of Detection (LLD)	
Hg	12%	14%	9 ppm	
Cd	6%	10%	115 ppm	
Pb	19%	20%	4,400 ppm	

- PENTRAN adjoint used to fold (n,γ) source to predict HPGe detector response ...
 - ... Results agree with experimental data within the limit of the experimental uncertainty

Nuclear and Radiological Engineering

BWR Simulation (for Core Shroud)

- PENTRAN BWR reactor/Core Shroud Assembly Model (Left)
- 67 Group P3-S8 coupled n-γ calculation
 - 265,264 fine mesh cells, 12 hours on 48 IBM-SP2 processors
 - Decomposition: 8 processors Angular, 6 processors Spatial
- Displacement per Atom (DPA) in core shroud (Right)

Multigroup (BUGLE-96) PENTRAN values within 5-15% of continuous energy MCNP values (Kucukboyaci, et. al, 2000).

Nuclear and Radiological Engineering

He-3 Detector System (adjoint app)

(Sjoden, 2002)

Spectral Detector Efficiency

- Computational He-3 Detector Design
- Objective: Predict neutron detector response using PENTRAN Sn adjoint
- Continuous Energy MCNP agreement
- Limitations of BUGLE-96

HEU Criticality Benchmark

HEU Annular Ring Criticality Benchmark
 Calculation yielding keff=0.994
 Exact agreement with MG-MCNP (+/-0.001)

Nuclear and Radiological Engineering

OECD/NEA MOX 2-D, 3-D Benchmarks

16

(Yi and Haghighat, 2004)

 OECD/NEA C5G7 MOX 2-D, 229,551 fine meshes, S16 (228 directions/cell), 7 energy groups (Left)
 PENTRAN keff=1.18760, <0.1% diff MCNP
 Rel power difference with MCNP (Bottom Right) avg diff 0.88%, stat err MCNP 0.4% to 1.24%.
 3-D unrodded case, 946,080 spatial meshes keff=1.14323, within <0.09% of MCNP

Homeland Security Application

"Pu-Ball in a Box" Problem
 4 kg, 10-yr old alpha Pu surrounded by tungsten...
 M₂ = 3.681
 Neutron detection modeling and simulation applications

Other Parallel...

BWR Reactor Simulation, PENTRAN Scalability study						
Case	No. of Directions	No. of Processors	Domain Decomposition (A/G/S) ¹	Wall-Clock time per iteration (s)		
1	24	6	1/1/6	30.12		
2	48	12	1/1/12	33.28		
3	80	24	4/1/6	29.52		
4	169	48	8/1/6	36.12		
1/						

 $^{\prime\prime}$ A/G/S) refers to the number of angular, group, and spatial subdomains

PENTRAN has been applied to a number of problems, with demonstrated accuracy and efficiency

- Experimental and/or Monte Carlo based benchmarks
- Achieved excellent agreement

 Typically, PENTRAN results are within 5% (or less) of MC simulations

Nuclear and Radiological Engineering

Brachytherapy Problem

QUADOS problems

- Several Medical Physics problems
- Unique application opportunities for Deterministic modeling

Brachytherapy Problem

- Investigating Sn solutions to high dose rate problems (Ir-192)
- Good Comparison to Monte Carlo
- Ray effects must be treated...

Ility Assurance of Computational Tools for Dosimetry" (QUADOS)

Brachytherapy Problem

- Ir-192 isotope contained SS source capsule
 0.45 cm long,
 26 mg Ir-192, ρ = 22.4 g/cc
 T¹/₂ = 73.8 days β-γ emitter
 26 photons, 22 electrons, 5 betas
- Capsule attached to a woven steel cable

Nuclear and Radiological Engineering

Brachytherapy Modeled Results

				Normalized Flux: Pentran/MCNP					
				Grid A		Grid B			
Photon Group	Upper Energy, MeV	MCNP Flux (ph/cm2/s)	R	S8	S14	S20	S8	S14	S20
1	1.5	3.04E+08	0.0036	0.09	0.44	0.75	0.49	0.92	1.02
2	1	1.76E+09	0.0021	0.09	0.44	0.75	0.49	0.92	1.03
3	0.8	3.54E+07	0.0407	0.56	0.70	0.84	0.88	1.20	1.29
4	0.7	7.24E+10	0.0014	0.09	0.44	0.75	0.49	0.92	1.03
5	0.6	2.94E+11	0.0019	0.09	0.42	0.75	0.48	0.92	1.02
6	0.4	8.14E+11	0.0019	0.13	0.37	0.66	0.52	0.90	1.02
7	0.2	1.32E+11	0.0059	0.75	0.82	0.90	0.90	0.97	1.03
8	0.1	2.03E+10	0.0074	0.55	0.60	0.66	0.72	0.85	0.90
9	0.06	2.29E+10	0.0110	0.03	0.03	0.03	0.03	0.04	0.04
10	0.03	6.84E+07	0.0898	0.01	0.01	0.01	0.01	0.01	0.01
11	0.02	1.14E+08	0.3304	0.00	0.00	0.00	0.00	0.00	0.00

Sn-P3 Good agreement with MCNP for S20 in Groups 1-8

S8 (80 dir) inadequate due to ray effects; compare Grid A, B

S14 (224 dir) better (good results for Grid B)

lear S20 (440 dir) very good agreement (Grid B)

Ordinate ("Omega") Splitting (OS)

- OS First introduced by Haghighat and Brown as a method of eliminating ray effects in a CT-Scan simulation with PENTRAN
- OS implemented as an option in PENTRAN for any direction
- Yielded very good agreement with MCNP CT-Scan simulation

luclear and Radiological Engineering

Ordinate ("Omega") Splitting

- Ordinate splitting feature allows for important directions to be covered
- Important in Medical Physics applications
- EXAMPLE: S8
 - normally 10 dir/octant
 - Split in 42 directions among octant ordinates 1, 5, 7 10
- Mitigates Ray Effects...
- Directly accessible in PENTRAN

Geometry: 3d

S8 3D Level Symmetric Angular Quadrature
Number of Omegas per Octant : 42
ABS Minimum Direction Cosine : .129520460963249

Omega Sampling Order: Sn Angles

 S8
 xi

 (+++) Octant
 1

 m-Level Diagram
 2

 (Sweep 2)
 4
 5

 7
 8
 9

 mu
 eta

Omega Splitting Segments:

X-Ray Room Modeling ...

90 m³ room discretized into >110,000 3-D cells
PENMSH[™] code (8 "z-levels" floor to ceiling)
BUGLE-96: last 4-group photon xsecs
80kV radiographic W-anode

- 32 mAs x-ray burst
- Rotating anode water cooled source
- Use PENTRAN's angular ordinate feature
 - Angular Dependent Surf Source on patient
 - Planar, only -Ωz directions

X-Ray Room Model: B.C.'s

- In MP applications, we do not want to discretize walls and floor
 - Perform 3-D (1-D) albedo calculations (4 group)
 - Scatter through patient important to albedos
 - Obtain group dependent
 α's = J-/J+

X-Ray Room Model: Grp 1

Ordinate Splitting Comparison, G1

S8+OS A/G/S=2/1/2 (1,5,7,10)

■ S8, A/G/S=2/1/2

Ordinate Splitting Comparison, G2

S8+OS A/G/S=2/1/2 (1,5,7,10)

■ S8, A/G/S=2/1/2

Deterministic Radiation Transport Simulations in γ-Ray IMRT Devices

Medical Physics Modeling and Simulation Effort

- Ahmad Al-Basheer, PhD Grad Asst
- Dr Sjoden (PI)
- Cooperative effort with Dr Haghighat, Dr Dempsey (Radiation Oncology), Monica Ghita, Benoit Dionne, PhD Grad Assts
- Apply neutral particle transport methods
 - Total energy release/convolution methods to approximate neutral and charged particle dose effects in 3-D.
- Focus on Parallel Sn methods, Benchmark with Monte Carlo Methods (PENTRAN and MCNP)
- Goal: minimize dose effects, extrapolate electron dose, accelerate data extraction and treatment planning; create PENTRAN-MP for Med Physics

Photon Transport Calculations for Medical Physics Problems & Treatment Planning

Hybrid Monte Carlo-Deterministic Methods for Simulating Radiation Interactions with Matter. Particle transport methods and numerical methods for solving medical physics problems, and high performance computing.

This summer

Al-Basheer, A., M. Ghita, G. Sjoden, B. Dionne, "Comparison of 3-D Deterministic and Monte Carlo Cross Sections for Medical Physics Problems," American Nuclear Society, Washington D.C. Meeting,

American Nuclear Society, June 2005.

"Comparison of 3-D Deterministic & Monte Carlo Cross Sections for Medical Physics"

- Al-Basheer, Ghita, Sjoden, and Dionne
- Snapshot of our efforts to compare and contrast parallel multigroup SN computations to Monte Carlo solutions
- Traditional deterministic radiation transport cross section libraries
 - Limited application in medical physics problems
 - Energy group structure issues
 - Broad group basis
- We compare the performance of 3 cross section libraries available from nuclear engineering, physics communities
- To compare these libraries, we computed 3-D flux distributions in a water phantom exposed to gamma-rays
- PENTRAN parallel SN compared to CE MCNP Monte Carlo
 - S42 angular quadrature (1848 directions/mesh/group)
 - P3 scattering anisotropy.

Consider slices through various parts of the model.

Comparing xsecs for MP Applications

Figure 1

Figure 2

Fig 1: scalar flux distributions generated by PENTRAN for a single energy group of each library using the MCNP5 solution as reference

Fig 2: deterministic results using BUGLE-96 were overall best ... in the water phantom, BUGLE-96 results were within the Monte Carlo statistical error

luclear and Radiological Engineering

Simulation of Novel Beam Filtering in the Shands Hospital Toshiba X-Ray Facility

- Nuclear Engineering Modeling support for Medical Physics Simulation efforts
 - Monica Ghita, PhD GA
 - Cooperative effort with Dr Manuel Arreola, Dir of Clinical Radiological Physics, Carly Williams, Ph.D. student
 - Assess efficacy of new beam filtering procedures in Toshiba methodology using computational models (PENTRAN and MCNP), link with clinical data, trials
 - Goal: Evaluate beam fidelity, dose effects, and facility performance to augment treatment planning
 Cooperative effort: NRE/Medical Physics Staff

Nuclear and Radiological Engineering

Simulations of Novel Beam Filtering Methods in Shands Toshiba X-ray facility

 Source spectra, continuous and characteristic X-ray, corresponding to any operational parameters (kVp, target angle, filtration)

-- computationally generated

-- experimentally validated (stripped from the pulse height spectrum of the HPGe-detector)

 Deterministic transport calculations for improved prediction of dose
 Computational (stochastic-MCNP and deterministic-PENTRAN) assessment of the novel Ta filter: effects on the entrance skin dose and the image quality
 Development and testing of appropriate schemes for discrete ordinates spatial differencing

Closing Remarks

- PENTRAN used to solve a number of problems
 - Large problems demand parallel execution
 - Parallel speedup defined by slowest processor
- Medical physics applications...
 - Need robust angular treatment
 - Angular dependent source feature in PENTRAN permits ready simulation of photon beamlets
 - Now coupling CT voxel image data for different tissue
 - Analysis of accuracy with adaptive differencing needed
 - Decoupling of boundaries with group dependent albedos may be best with group-spatial decomposition

Simulations of Novel Beam Filtering Methods in Shands Toshiba X-ray facility

