$A^3\text{MCNP}$

(Automated Adjoint Accelerated MCNP)

A. Haghighat
Overview - History

• A^3MCNP was developed by John Wagner* and Alireza Haghighat in 1997 (Wagner’s PhD dissertation)

• Since then we have used the code system for various important problems successfully

• The A^3 Patch is marketed through the HSW Technologies; five copies have been sold thus far

• In 2003, we implemented a new volumetric source distribution (sponsored by Mitsubishi Heavy Industries – MHI)

• We are planning to combine the neutral and charge particle algorithms
Contents

CADIS Methodology

A^3MCNP

Application of A^3MCNP
CADIS – Consistent Adjoint Driven Importance Sampling

Description:

Uses a 3-D S_N importance function distribution for source biasing and transport biasing in a consistent manner, within the weight-window (r, E) technique.

their biasing formulations are derived based on importance sampling applied to the source integral and transport integral.
Source biasing

Detector (\(\sigma_d\)) response formulation

\[
H \psi = s
\]

where \(p = (\vec{r}, E, \Omega) \)

\[
R = \int \sigma_d(p) \psi(p) dp
\]

\[
H^+ \psi^+ = \sigma_d
\]

\[
R = \int q(p) \psi^+(p) dp
\]

CADIS

Source biasing

Biased source

\[\hat{q}(p) = \frac{\phi^+(p)q(p)}{\int_{p} \phi^+(p)q(p)dp} = \frac{\phi^+(p)q(p)}{R} \]

Particle weight

\[W(p) = \frac{R}{\phi^+(p)} \]
CADIS – Consistent Adjoint Driven Importance Sampling

Transport biasing

Transport equation

\[
\phi(p) = \int_{p'} K(p' \rightarrow p)\phi(p')dp' + q(p)
\]

Transport equation for the biased source

\[
\hat{\phi}(p) = \int_{p'} \hat{K}(p' \rightarrow p)\hat{\phi}(p')dp' + \hat{q}(p)
\]

where

\[
\hat{\psi}(p) = \frac{\psi^+(p)\psi(p)}{R} \quad \hat{q}(p) = \frac{\psi^+(p)q(p)}{R}
\]

\[
\hat{K}(p' \rightarrow p) = K(p' \rightarrow p)\left[\frac{\phi^+(p)}{\phi^+(p')}\right]
\]
Transport biasing

\[\hat{K}(p' \rightarrow p) = K(p' \rightarrow p) \left[\frac{\phi^+(p)}{\phi^+(p')} \right] \]

- If \(\left(\frac{\psi^+(p)}{\psi^+(p')} \right) < 1 \), particles are processed through the Russian roulette,
- Otherwise, particles are split

- Particle statistical weight

\[w(p) = \left(\frac{\psi^+(p')}{\psi^+(p)} \right) w(p') \]
Note:

The word "consistent" in CADIS refers to the transport biasing formulation is derived consistently based on the biased source.
A³MCNP – Automated Adjoint Accelerated MCNP

• CADIS methodology effective, but

• Automation tools are needed for determination of “importance” function

• Hence, we developed A³MCNP
A³MCNP Calculations

Step 1
- mesh distribution
- material composition
- input files

Step 2
- multi-group cross sections
- S_N adjoint function

Step 3
- VR parameters
- non-analog MC Calculation
Application of A^3MCNP

• **PWR Cavity dosimetry**

 For determination of neutron interaction rates with dosimetry materials placed at the reactor cavity, and estimation of fluence at the reactor pressure vessel

• **BWR Core Shroud**

 Determination of neutron and gamma fields at the reactor pressure vessel

• **Storage cask**

 Determination of neutron and gamma fields at the cask’s outside surface
Application

PWR cavity dosimetry

- Objective: Estimation of neutron reaction rates at the cavity dosimeter for benchmarking of the PV fluence.
- Problem size: $R=350$ cm, $\theta=45^\circ$, $z=400$ cm
- Deep penetration
- Detector size (radius of ~2 cm, \simheight of the model)
- $R-\theta$, Sn DORT calculation: 8500 meshes, S8, 47-group/P3; CPU time = 15 min
Application

PWP cavity dosimetry (continued)

\[
\frac{FOM(CADIS)}{FOM(MCNP)} \cong 50,000
\]

Relatively speaking, DORT CPU time is negligible, hence

\[
\frac{CPU(CADIS)}{CPU(MCNP)} \cong 50,000
\]
Application

BWR Core Shroud

Determination of neutron and gamma DPA at the core shroud
Application

Different A³MCNP meshing for the core shroud problem was developed to examine the performance of the code, e.g.

<table>
<thead>
<tr>
<th>Case</th>
<th>Total # of meshes (# axial meshes)</th>
<th>Mesh size (x, y, z) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86400 (24)</td>
<td>5, 5, 15.875</td>
</tr>
<tr>
<td>2</td>
<td>43200 (12)</td>
<td>5, 5, 31.75</td>
</tr>
<tr>
<td>3</td>
<td>38400 (24)</td>
<td>7.5, 7.5, 15.875</td>
</tr>
<tr>
<td>4</td>
<td>10800 (12)</td>
<td>10, 10, 31.75</td>
</tr>
<tr>
<td>5</td>
<td>2700 (12)</td>
<td>20, 20, 31.75</td>
</tr>
<tr>
<td>6</td>
<td>1200 (12)</td>
<td>30, 30, 31.75</td>
</tr>
<tr>
<td>7</td>
<td>300 (12)</td>
<td>60, 60, 31.75</td>
</tr>
</tbody>
</table>

Table 2 - Different back-thinned cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>No. of Meshes (axial mesh)</th>
<th>Max. mesh size (cm) in Fuel, moderator, steel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ref. Back-thinned</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>86400(24) 65067(24)</td>
<td>5.0, 10.0, 5.0</td>
</tr>
<tr>
<td>9</td>
<td>43200(12) 32557(12)</td>
<td>5.0, 10.0, 5.0</td>
</tr>
<tr>
<td>10</td>
<td>38400(24) 18525(24)</td>
<td>15.0, 15.0, 7.5</td>
</tr>
</tbody>
</table>
Application

BWR Core-Shroud (continued)

- 3-D Sn TORT calculations: different # of meshes, S8, 47-group/P3, different CPUs
- Detector size (?)

- Sample:

Importance function distributions for different fixed mesh cases
Application

BWR Core-shroud (continued)

Results:

Table 3 - Estimated DPA and associated statistics after 100 CPU minutes for the unbiased case and cases 1 to 10.

<table>
<thead>
<tr>
<th>Case No.</th>
<th># of meshes (# of axial meshes)</th>
<th>DPA [dpa/sec]</th>
<th>Relative Error [%]</th>
<th>FOM</th>
<th>MCNP Speedup FOM_{biased}/FOM_{unbiased}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbiased</td>
<td>N/A</td>
<td>3.877E-10</td>
<td>14.97*</td>
<td>0.022*</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>86400 (24)</td>
<td>3.571E-10</td>
<td>1.05</td>
<td>90.7</td>
<td>4123</td>
</tr>
<tr>
<td>2</td>
<td>65067 (24)</td>
<td>3.504E-10</td>
<td>1.19</td>
<td>70.6</td>
<td>3209</td>
</tr>
<tr>
<td>3</td>
<td>43200 (12)</td>
<td>3.452E-10</td>
<td>1.26</td>
<td>63.1</td>
<td>2868</td>
</tr>
<tr>
<td>4</td>
<td>10800 (12)</td>
<td>3.440E-10</td>
<td>1.35</td>
<td>54.9</td>
<td>2945</td>
</tr>
<tr>
<td>5</td>
<td>2700 (12)</td>
<td>3.513E-10</td>
<td>2.46</td>
<td>16.5</td>
<td>750</td>
</tr>
<tr>
<td>6</td>
<td>1200 (12)</td>
<td>3.512E-10</td>
<td>2.56</td>
<td>15.3</td>
<td>696</td>
</tr>
<tr>
<td>7</td>
<td>300 (12)</td>
<td>3.470E-10</td>
<td>5.88</td>
<td>2.89</td>
<td>131</td>
</tr>
<tr>
<td>8</td>
<td>38400 (24)</td>
<td>3.517E-10</td>
<td>1.25</td>
<td>64.0</td>
<td>2909</td>
</tr>
<tr>
<td>9</td>
<td>32557 (12)</td>
<td>3.469E-10</td>
<td>1.57</td>
<td>40.6</td>
<td>1845</td>
</tr>
<tr>
<td>10</td>
<td>18525 (24)</td>
<td>3.593E-10</td>
<td>1.52</td>
<td>43.3</td>
<td>1968</td>
</tr>
</tbody>
</table>

* result after 2000 CPU minutes
Application

BWR core-shroud (continued)

Results:

Table 4 - Comparison of total CPU time \((TORT+A^3MCNP^{TM})\) to achieve 1.0\% \((1\sigma)\) statistical uncertainty for the unbiased case and cases 1 to 10.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>No. of meshes (# of axial meshes)</th>
<th>TORT [minutes]</th>
<th>(A^3MCNP) [minutes]</th>
<th>Total [minutes]</th>
<th>Overall Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbiased</td>
<td>N/A</td>
<td>N/A</td>
<td>448,201</td>
<td>448,201</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>86400 (24)</td>
<td>424.6</td>
<td>110.3</td>
<td>534.9</td>
<td>838</td>
</tr>
<tr>
<td>2</td>
<td>65067 (24)</td>
<td>309.0</td>
<td>141.6</td>
<td>450.6</td>
<td>995</td>
</tr>
<tr>
<td>3</td>
<td>43200 (12)</td>
<td>257.2</td>
<td>158.8</td>
<td>416.0</td>
<td>1077</td>
</tr>
<tr>
<td>4</td>
<td>10800(12)</td>
<td>40.8</td>
<td>182.7</td>
<td>223.5</td>
<td>2005</td>
</tr>
<tr>
<td>5</td>
<td>2700 (12)</td>
<td>10.2</td>
<td>604.8</td>
<td>615.0</td>
<td>729</td>
</tr>
<tr>
<td>6</td>
<td>1200 (12)</td>
<td>5.0</td>
<td>655.2</td>
<td>660.2</td>
<td>679</td>
</tr>
<tr>
<td>7</td>
<td>300 (12)</td>
<td>1.3</td>
<td>3461.4</td>
<td>3462.7</td>
<td>129</td>
</tr>
<tr>
<td>8</td>
<td>38400 (24)</td>
<td>256.7</td>
<td>156.3</td>
<td>413.0</td>
<td>1085</td>
</tr>
<tr>
<td>9</td>
<td>32557 (12)</td>
<td>205.5</td>
<td>246.5</td>
<td>452.0</td>
<td>992</td>
</tr>
<tr>
<td>10</td>
<td>18525 (24)</td>
<td>128.7</td>
<td>231.0</td>
<td>359.7</td>
<td>1246</td>
</tr>
</tbody>
</table>
Application

Shipping cask

• Objective: Estimation of Neutron and gamma dose on the cask surface
• Problem Size: 180 x 180 x 840 cm³
• A Deep penetration problem
Application

Shipping cask (continued)

• TORT 3-D Sn calculation: 32256 meshes S8, 18-group/P3, CPU = 20.7 min

• Detector region: a shell over the whole surface of the cask

Adjoint source placed on the surface, thin (10 cm) air region, and axial height of [30.5 – 592.5 cm]
A3MCNP SHIPPING CASK MESHING FOR TORT
A3MCNP SHIPPING CASK MESHING FOR TORT (continued)
Shipping cask (continued)

Sample: Importance function distribution for group 1 gamma rays
Source Distribution

Unbiased

Biased
A³MCNP Performance

Behavior of FOM for estimation of axial dose

Axial mid-points of tally cells on the surface of the CASK, located between 30.48 and 592.5 cm.
A3MCNP was used to examine determination of localized regions by performing different calculations.
Neutron Source

10 5.00E-05
9 4.09E-03
8 3.31E-02
7 1.63E-01
6 2.29E-01
5 2.57E-01
4 2.33E-01
3 7.03E-02
2 9.61E-03
1 5.00E-05

Importance Function
Distributions for different adjoint sources

Biased Sources
Determination of surface dose, axial mid-plane (only)

(1-\(\sigma \) Relative Error = 1%)

<table>
<thead>
<tr>
<th>Model</th>
<th># CPU</th>
<th>Dose Ratio</th>
<th>FOM</th>
<th>Run Time (hrs)</th>
<th>Speedup</th>
<th>Values/ Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbiased Cont. Energy MCNP</td>
<td>8</td>
<td>1.00</td>
<td>0.78</td>
<td>214</td>
<td>1.0</td>
<td>19</td>
</tr>
<tr>
<td>Unbiased Multigroup MCNP</td>
<td>8</td>
<td>0.70</td>
<td>0.46</td>
<td>362</td>
<td>0.6</td>
<td>30</td>
</tr>
<tr>
<td>A³MCNP Cont. Energy</td>
<td>1</td>
<td>1.00</td>
<td>109</td>
<td>1.5</td>
<td>140</td>
<td>1,856</td>
</tr>
<tr>
<td>PENTRAN ‘Large’ Model</td>
<td>8</td>
<td>0.74</td>
<td>165</td>
<td>1.3</td>
<td>42,100</td>
<td></td>
</tr>
<tr>
<td>PENTRAN ‘Small’ Model</td>
<td>8</td>
<td>0.74</td>
<td>123</td>
<td>1.7</td>
<td>35,000</td>
<td></td>
</tr>
</tbody>
</table>
Tally locations: Four Annular Segments Near Top
(494 cm – 563 cm)

- No results for the unbiased MCNP case, after 220 hours on 8 processors

A³MCNP on 1 processor

<table>
<thead>
<tr>
<th>[(mRem/hr)/n/cm²/s]</th>
<th>FOM</th>
<th>PENTRAN/A³MCNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14E-06 (2.73%)ᵃ</td>
<td>8.974</td>
<td>0.84</td>
</tr>
<tr>
<td>1.70E-06 (3.36%)ᵇ</td>
<td>1.843</td>
<td>0.82</td>
</tr>
<tr>
<td>9.97E-07 (5.08%)ᵇ</td>
<td>0.806</td>
<td>0.79</td>
</tr>
<tr>
<td>5.11E-07 (3.52%)ᵇ</td>
<td>1.682</td>
<td>0.80</td>
</tr>
</tbody>
</table>

ᵃ 2.5 hrs, 1 CPU
ᵇ 8 hrs, 1 CPU
Remarks

• To solve large/complex real-world problems in a reasonable amount of amount, we need to use hybrid methods

• Using deterministic importance function, A³MCNP can solve large complex problems faster (few orders of magnitudes) than the unbiased MCNP.

• Besides the computation speed, systems like PENTRAN & A³MCNP significantly reduce the engineer’s time and improve confidence in results.