A³MCNP (Automated Adjoint Accelerated MCNP)

A. Haghighat

Overview - History

- A³MCNP was developed by John Wagner* and Alireza Haghighat in 1997 (Wagner's PhD dissertation)
- Since then we have used the code system for various important problems successfully
- The A³ Patch is marketed through the HSW Technologies; five copies have been sold thus far
- In 2003, we implemented a new volumetric source distribution (sponsored by Mitsubishi Heavy Industries – MHI)
- We are planning to combine the neutral and charge particle algorithms

CADIS – Consistent Adjoint Driven Importance Sampling

Description:

Uses a 3-D S_N importance function distribution for source biasing transport biasing

in a consistent manner^{*}, within the weight-window (r, E) technique.

*their biasing formulations are derived based on importance sampling applied to the source integral and transport integral.

CADIS

Source biasing

CADIS

Source biasing

Biased source

$$\hat{q}(p) = \frac{\phi^+(p)q(p)}{\int\limits_p \phi^+(p)q(p)dp} = \frac{\phi^+(p)q(p)}{R}$$

Particle weight

$$W(p) = \frac{R}{\phi^+(p)}$$

CADIS – Consistent Adjoint Driven Importance Sampling

Transport biasing

Transport equation

$$\phi(p) = \int_{p'} K(p' \rightarrow p)\phi(p')dp' + q(p)$$

Transport equation for the biased source

$$\hat{\phi}(p) = \int_{p'} \hat{K}(p' \rightarrow p) \hat{\phi}(p') dp' + \hat{q}(p)$$

where

$$\hat{\psi}(p) = \frac{\psi^+(p)\psi(p)}{R} \qquad \qquad \hat{q}(p) = \frac{\psi^+(p)q(p)}{R}$$
$$\hat{K}(p' \to p) = K(p' \to p) \left[\frac{\phi^+(p)}{\phi^+(p')}\right]$$

CADIS

Transport biasing

$$\hat{K}(p' \to p) = K(p' \to p) \left[\frac{\phi^+(p)}{\phi^+(p')} \right]$$

$$\begin{array}{c} p' \\ \text{High Imp.} \end{array}$$

$$F \\ \text{Low Imp.} \end{array}$$

•If $\left(\frac{\psi^+(p)}{\psi^+(p')}\right) < 1$, particles are processed through the Russian roulette, Otherwise, particles are split

•Particle statistical weight

$$w(p) = \left(\frac{\psi^+(p')}{\psi^+(p)}\right) w(p')$$

Note:

The word "consistent" in CADIS refers to the transport biasing formulation is derived consistently based on the biased source.

A³MCNP – Automated Adjoint Accelerated MCNP

•CADIS methodology effective, but

•Automation tools are needed for determination of "importance" function

•Hence, we developed A³MCNP

A³MCNP Calculations

Application of A³MCNP

•PWR Cavity dosimetry

For determination of neutron interaction rates with dosimetry materials placed at the reactor cavity, and estimation of fluence at the reactor pressure vessel

•BWR Core Shroud

Determination of neutron and gamma fields at the reactor pressure vessel

•Storage cask

Determination of neutron and gamma fields at the cask's outside surface

PWR cavity dosimetry

- •Objective: Estimation of neutron reaction rates at the cavity dosimeter for benchmarking of the PV fluence.
- •Problem size: R=350 cm, θ =45°, z= 400 cm
- •Deep penetration
- •Detector size (radius of ~2 cm, ~height of the model)
- •R-θ, Sn DORT calculation: 8500 meshes, S8, 47-group/P3; CPU time = 15 min

PWP cavity dosimetry (continued)

$$\frac{FOM(CADIS)}{FOM(MCNP)} \cong 50,000$$

Relatively speaking, DORT CPU time is negligible, hence

$$\frac{CPU(CADIS)}{CPU(MCNP)} \cong 50,000$$

BWR Core Shroud

Determination of neutron and gamma DPA at the core shroud

Different A³MCNP meshing for the core shroud problem was developed to examine the performance of the code, e.g.

Case	Total # of meshes	Mesh size (x, y, z)	
	(# axial meshes)	(cm)	
1	86400 (24)	5,5,15.875	
2	43200 (12)	5, 5, 31.75	
3	38400 (24)	7.5,7.5,15.875	
4	10800 (12)	10, 10, 31.75	
5	2700 (12)	20, 20, 31.75	
6	1200 (12)	30, 30, 31.75	
7	300 (12)	60, 60, 31.75	

Table 2 - Different back-thinned cases.

Case	No. of Meshes	Max. mesh size (cm) ir	
	Ref.	Back-thinned	Fuel, moderator, steel
8	86400(24)	65067(24)	5.0, 10.0, 5.0
9	43200(12)	32557(12)	5.0,10.0,5.0
10	38400(24)	18525(24)	15.0,15.0,7.5

BWR Core-Shroud (continued)

• 3-D Sn TORT calculations: different # of meshes, S8, 47-group/P3, different CPUs

•Detector size (?)

•Sample:

BWR Core-shroud (continued)

Results:

Case No.	# of meshes	DPA	Relative	FOM	MCNP Speedup
	(# of axial	[dpa/sec]	Error		$FOM_{biased}/FOM_{unbiased}$
	meshes)		[%]		
Unbiased	N/A	3.877E-10 [*]	14.97*	0.022^{*}	1
1	86400 (24)	3.571E-10	1.05	90.7	4123
2	65067 (24)	3.504E-10	1.19	70.6	3209
3	43200 (12)	3.452E-10	1.26	63.1	2868
4	10800 (12)	3.440E-10	1.35	54.9	2945
5	2700 (12)	3.513E-10	2.46	16.5	750
6	1200 (12)	3.512E-10	2.56	15.3	696
7	300 (12)	3.470E-10	5.88	2.89	131
8	38400 (24)	3.517E-10	1.25	64.0	2909
9	32557 (12)	3.469E-10	1.57	40.6	1845
10	18525 (24)	3.593E-10	1.52	43.3	1968

Table 3 - Estimated DPA and associated statistics after 100 CPU minutes forthe unbiased case and cases 1 to 10.

* result after 2000 CPU minutes

BWR core-shroud (continued)

Results:

Table 4 - Comparison of total CPU time (TORT+ A^3MCNP^{TM}) to achieve 1.0% (1 σ) statistical uncertainty for the unbiased case and cases 1 to 10.

Case No.	No. of meshes (#	TORT	A ³ MCNP	Total	Overall
	of axial meshes)	[minutes]	[minutes]	[minutes]	Speedup
Unbiased	N/A	N/A	448,201	448,201	1
1	86400 (24)	424.6	110.3	534.9	838
2	65067 (24)	309.0	141.6	450.6	995
3	43200 (12)	257.2	158.8	416.0	1077
4	10800(12)	40.8	182.7	223.5	2005
5	2700 (12)	10.2	604.8	615.0	729
6	1200 (12)	5.0	655.2	660.2	679
7	300 (12)	1.3	3461.4	3462.7	129
8	38400 (24)	256.7	156.3	413.0	1085
9	32557 (12)	205.5	246.5	452.0	992
10	18525 (24)	128.7	231.0	359.7	1246

Shipping cask

•Objective: Estimation of Neutron and gamma dose on the cask surface

• Problem Size: 180 x 180 x 840 cm³

•A Deep penetration problem

Neutron source distribution

A³MCNP SHIPPING CASK MESHING FOR TORT

Engineenne

A³MCNP SHIPPING CASK MESHING FOR TORT (continued)

Z-level 32

Z-level 33

Source Distribution

Unbiased

Biased

A³MCNP Performance

Behavior of FOM for estimation of axial dose

Simulation of a Storage Cask

Model A³MCNP was SHIELD BLOCK used to LID examine determination of localized MPC regions by performing - EXIT VENT different calculations - DUTER SHELL INNER SHELL RADIAL -SHIELD BASEPLATE INLET VENT PEDESTAL SHIELD UFTTG

Neutron Source

Importance Function Distributions for different adjoint sources

Biased Sources

Determination of surface dose, axial mid-plane (only) (1- σ Relative Error = 1%)

Tally locations: Four Annular Segments Near Top (494 cm – 563 cm)

<u>No results</u> for the unbiased MCNP case, after 220 hours on 8 processors

A³MCNP on 1 processor

[(mRem/hr)/n/cm ² /s]		FOM	PENTRAN/A ³ MCNP
3.14E-06	(2.73%) ^a	8.974	0.84
1.70E-06	(3.36%) ^b	1.843	0.82
9.97E-07	(5.08%) ^b	0.806	0.79
5.11E-07	(3.52%) ^b	1.682	0.80

^a 2.5 hrs, 1 CPU

^b 8 hrs, 1 CPU

•To solve large/complex real-world problems in a reasonable amount of amount, we need to use hybrid methods

•Using deterministic importance function, A³MCNP can solve large complex problems faster (few orders of magnitudes) than the unbiased MCNP.

•Besides the computation speed, systems like PENTRAN & A³MCNP significantly reduce the engineer's time and improve confidence in results.

