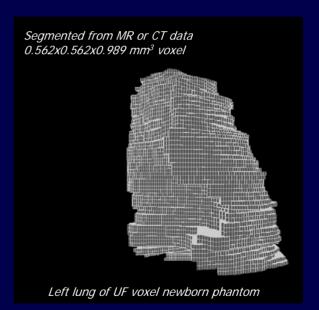

Effect of subcutaneous fat on organ dose in radiography and computed tomography: A Monte Carlo calculational study

<u>Choonsik Lee</u>, Daniel Lodwick, and Wesley E. Bolch Department of Nuclear and Radiological Engineering University of Florida



• Radiation dose distributions within the human body from internally deposited radiation source have been calculated by the Monte Carlo method coupled with anthropomorphic computational phantoms.

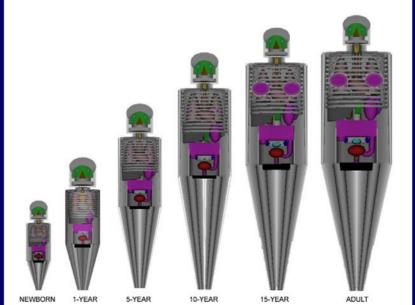
Left lung of ORNL newborn phantom

Stylized (mathematical) phantom Since 1960s

Voxel (tomographic) phantom Since 1980s

—Paper

REVISIONS TO THE ORNL SERIES OF ADULT AND PEDIATRIC COMPUTATIONAL PHANTOMS FOR USE WITH THE MIRD SCHEMA


Eun Young Han,* Wesley E. Bolch,*† and Keith F. Eckerman[‡]

Abstract-The age-dependent series of stylized computational phantoms developed at the Oak Ridge National Laboratory in the late 1970's to early 1980's has found wide applicability in dosimetry studies ranging from dose coefficient compilations for external and internal photon emitters, simulations of patient radiological exams, and dose reconstruction activities. In the present study, we report on a series of revisions to the Oak Ridge National Laboratory series for their intended use within the MIRD schema of medical internal dosimetry. These revisions were made to (1) incorporate recent developments in stylized models of the head, brain, kidneys, rectosigmoid colon, and extra-pulmonary airways; (2) incorporate new models of the salivary glands and the mucosa layer of the urinary bladder, alimentary tract organs, and respiratory airways; (3) adopt reference values of elemental tissue compositions and mass densities from ICRP Publication 89 and ICRU Report 46: (4) provide for explicit treatment of left and right organs within organ pairs; (5) provide for a systematic tabulation of electron absorbed fractions as a function of energy and subject age for all internal organs; and (6) provide for methods of deriving patient-specific values of the specific absorbed fraction for both electrons and photons through interpolation/ extrapolation of their phantom-derived values. While tomographic computational phantoms provide improved anatomic realism given the CT or MR image sets used in their construction, there does not yet exist a comprehensive series of reference pediatric tomographic phantoms, nor the ability to sim-

INTRODUCTION

THE SERIES of stylized (or mathematical) phantoms developed at the Oak Ridge Na tory (ORNL) in the early 1980's have be sively in the study of organ doses in nu (Stabin and Sparks 2003; Stabin 1996), p ography (Jones and Wall 1985; Rosenstei et al. 2003), diagnostic and intervention: (Bolch et al. 2003; Stern et al. 1995; S 1991), environmental radiation exposures al. 1999; Eckerman and Ryman 1993), protection (ICRP 1989, 1993, 1994, 2001). These phantoms utilize 3D surfac represent both internal organ structure and shape. The ORNL series are hermaphrodite both male and female organs and tissues mathematical representations of a new 5-y-old, 10-y-old, 15-y-old, and an adult r model was originally considered to be rethe adult female until the publication (12907 (Stabin et al. 1995) in which p absorbed fractions from the 15-y phantom

- Revised organ models (brain, kidneys, recto-sigmoid colon, salivary glands, mucosa layers) incorporated
- Organ-specific reference elemental compositions (ICRU46)

Revised ORNL adult and pediatric stylized phantoms (Han et al. 2006)

INSTITUTE OF PHYSICS PUBLISHING

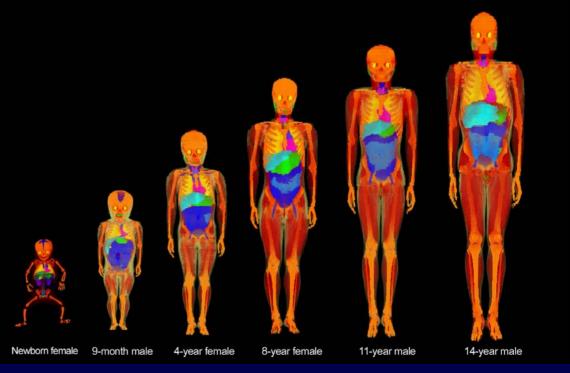
Phys. Med. Biol. 51 (2006) 4649-4661

Physics in Medicine and Biology doi:10.1088/0031-9155/51/18/013

Whole-body voxel phantoms of paediatric patients—UF Series B

Choonik Lee¹, Choonsik Lee¹, and Wesley E Bolch^{1,3}

 ¹ Department of Nuclear and Radiologi FL 32611, USA
² Department of Radiology, University
³ Department of Biomedical Engineerin


E-mail: wbolch@ufl.edu

Received 27 April 2006, in fina Published 5 September 2006 Online at stacks.iop.org/PMB/5

Abstract

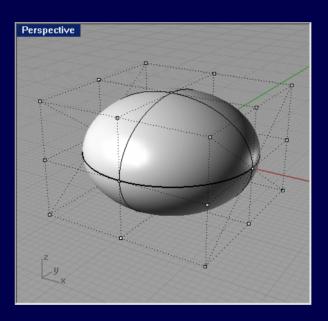
Following the previous develop of paediatric patients for use in a set of whole-body voxel pha 4-year female, 8-year female, developed through the attachme of a healthy Korean adult (UF \$

- Evolved from UF Series A torso phantoms (Lee et al. 2005)
- Arms and legs from Korean adult CT
- Match to ICRP89 reference data

UF Series B Voxel Phantoms (Lee et al. 2006)

• Two classes of computational phantoms have both advantages and disadvantages.

	Stylized Phantoms	Voxel Phantoms
Anatomic realism	Smooth organ surfaces	Cubically-shaped organ surfaces
	Equation-based organ descriptions	Manual image segmentation required
	Unrealistic organ depth, position, shape	Realistic organ depth, position, and shape
Flexibility	Parameter-based modification	Pixel-based modification
	Non-uniform scaling – difficult but possible	Uniform scaling is achievable
	Posture change – difficult but possible	Difficult to change posture


- Current stylized/voxel phantoms are based on reference human, but there are few 'reference-like' individuals in the world!
 - Weight and height variability
 - Body shape variability (fat distribution)
- How to estimate 'individual-specific' organ dose?
 - Approach 1: Make a library of voxel phantoms from lots of individuals
 - Approach 2: Do CT scan and automatic segmentation
 - Approach 3: Make flexible template phantoms and deform to individual

- Hybrid approach taking advantages of stylized and voxel phantoms
 - Based on realistic CT data (anatomic realism of voxel phantoms)
 - Employ flexible Non-uniform rational B-spline (NURBS) surface

Anatomical Realism (CT images of patient) Flexibility (NURBS surface)

Materials and Methods

Methodology for hybrid phantom established (Lee et al. 2007)

IOP PUBLISHING Phys. Med. Biol. **52** (2007) 3309–3333

PHYSICS IN MEDICINE AND BIOLOGY doi:10.1088/0031-9155/52/12/001

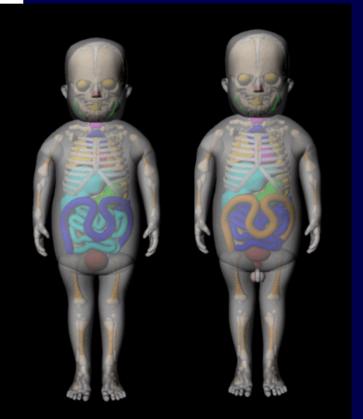
Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models^{*}

Choonsik Lee¹, Daniel Lodwick¹, Deanna Hasenauer¹, Jonathan L Williams², Choonik Lee³ and Wesley E Bolch^{1,4}

¹ Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611, USA

² Department of Radiology, University of Florida, Gainesville, FL 32611, USA

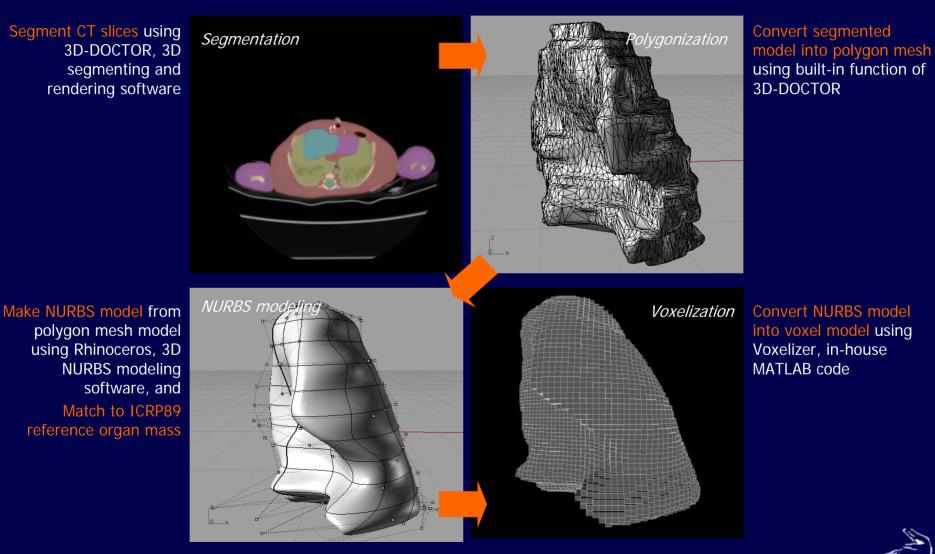
³ MD Anderson Cancer Center-Orlando, Orlando, FL 32806, USA


⁴ Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA

E-mail: wbolch@ufl.edu

Received 9 March 2007, in final form 25 April 2007 Published 16 May 2007 Online at stacks.iop.org/PMB/52/3309

Abstract


Anthropomorphic computational phantoms are computer models of the huma body for use in the evaluation of dose distributions resulting from eith internal or external radiation sources. Currently, two classes of computation phantoms have been developed and widely utilized for organ dose assessmen (1) stylized phantoms and (2) voxel phantoms which describe the huma anatomy via mathematical surface equations or 3D voxel matrices, respectivel Although stylized phantoms based on mathematical equations can be very

UF hybrid female (left) and male (right) newborns

Materials and Methods

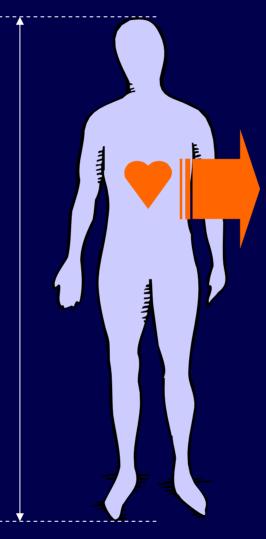
Materials and Methods – source anatomy

15-year hybrid male phantom

15-year hybrid female phantom

UF 14-year male voxel phantom

18-year male arm and leg CT



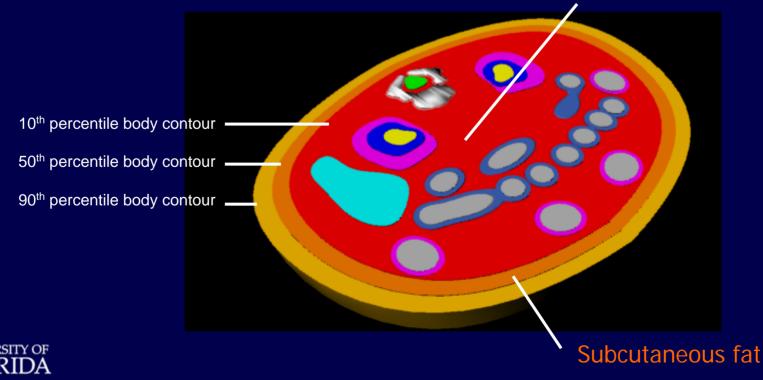
Materials and Methods – standardization

NHANES reference anthropometric data

- Standing height
- Sitting height
- Arm length
- Circumference
 - Head
 - Neck
 - Waist
 - Buttock
- Biacromial breadth

ICRP89 reference organ data

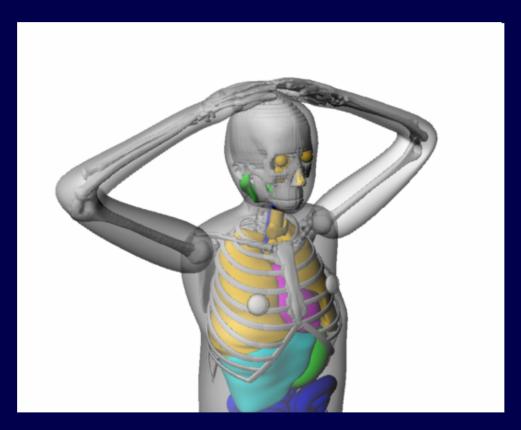
- 60 organs and tissues
- 38 bone sites



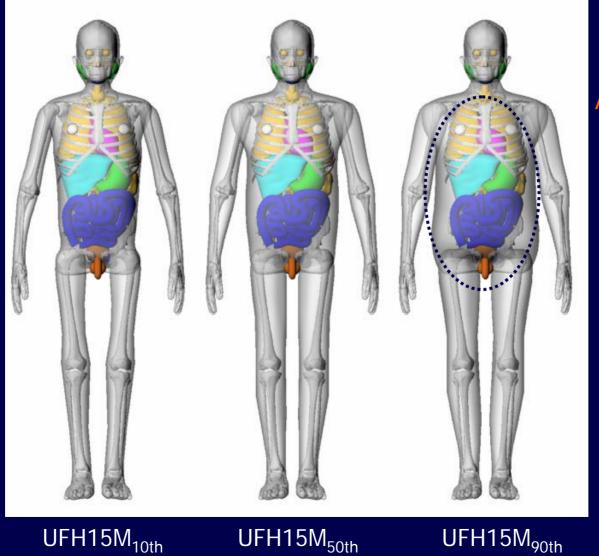
Materials and Methods – different body shape

- "Adiposity for male and female children is predominantly subcutaneous fat."
- "In males, fat typically accumulates in the upper segment of the body, both subcutaneously and intra-abdominally. This is appar ent visually as a bulging abdomen in an apple-shaped distributio n. In females, adipose tissue accumulates subcutaneously, parti cularly over the thighs in a pear-shaped gluteal distribution." (Arnold H. Slyper, Pediatrics Vol. 102, No. 1, 1998)

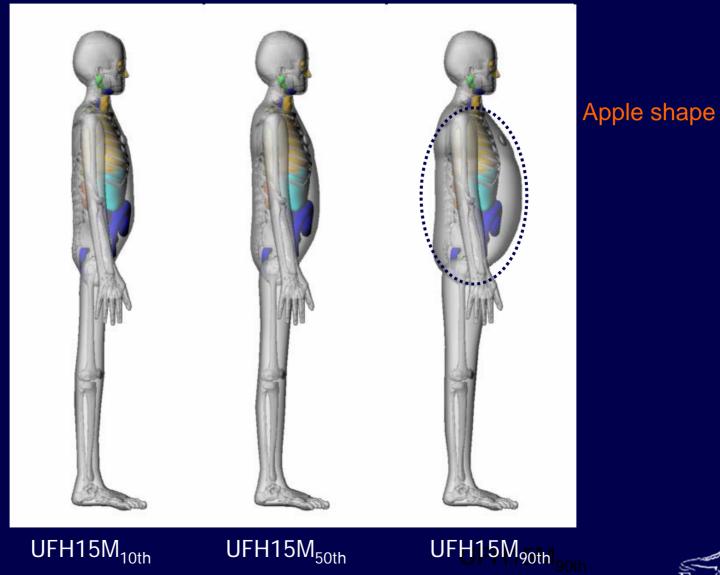
Intra-abdominal fat


Materials and Methods – applications

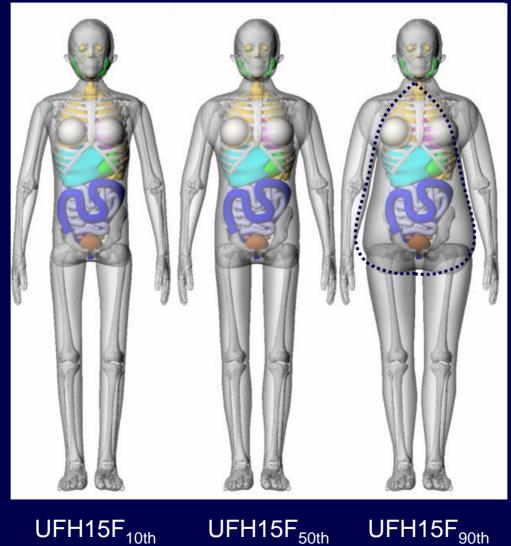
- Calculate dose conversion coefficients for projection radiographs
 - 66 kVp tube potential, 1.05 mm of Al filtration, and 12 degree of anode angle
 - Simulate chest PA and abdomen AP examinations (MCNPX2.5)
 - Calculate organ absorbed doses per entrance and exit air kerma
- Calculate organ absorbed dose for CT scans
 - Simulate SOMATOM Sensation 16 helical multi-slice CT scanner
 - MCNPX2.5 source routine was recompiled to incorporate helical CT beams
 - 100 kVp tube potential and 1.2 mm collimator width
 - Simulate chest and abdomen CT scans
 - Calculate organ absorbed doses normalized to 100 mAs

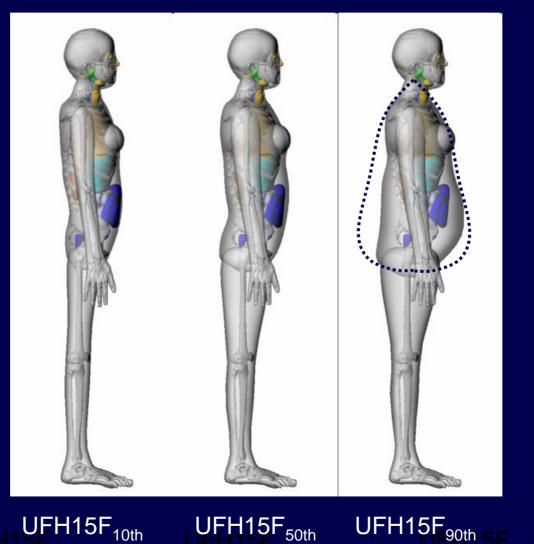

Materials and Methods – applications

Example of modified arm structure of UFH15M_{50th} for CT calculation



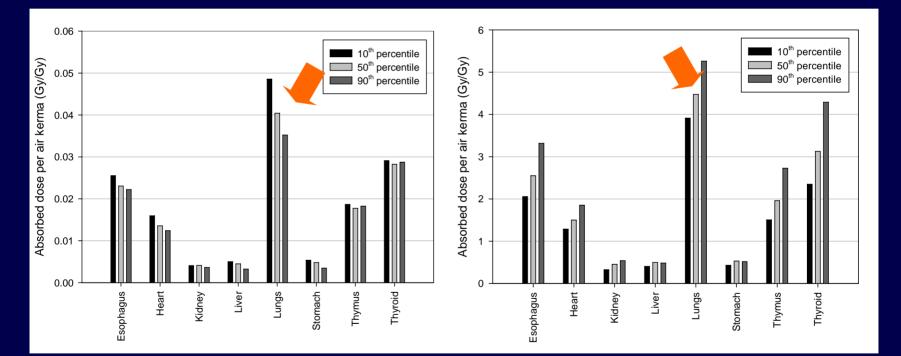
Apple shape




Pear shape

UFH15F_{50th}

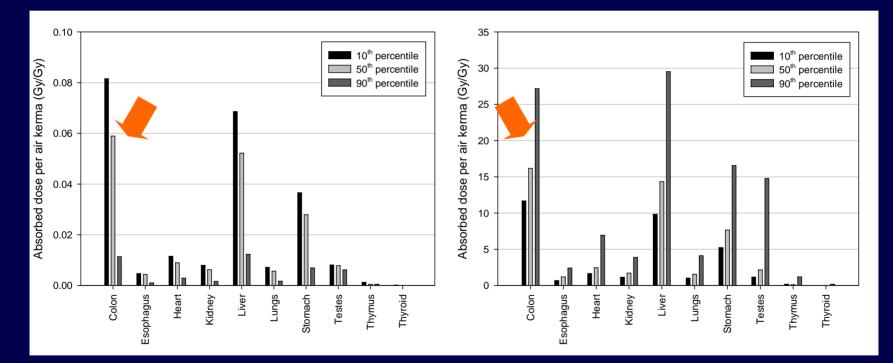
UFH15F_{90th}


Pear shape

Results and Discussions – projection radiographs

Absorbed dose per air kerma (Gy/Gy) for CHEST PA examination

Organ dose per ENTRACE air kerma


Organ dose per EXIT air kerma

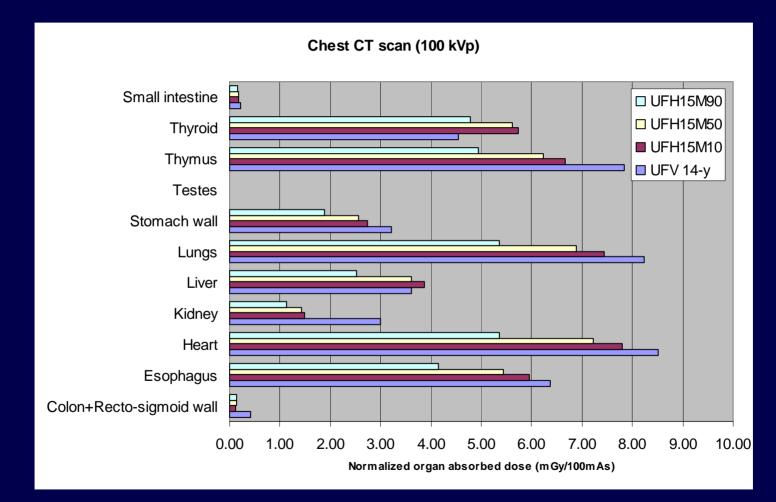
Results and Discussions – projection radiographs

Absorbed dose per air kerma (Gy/Gy) for ABDOMEN AP examination

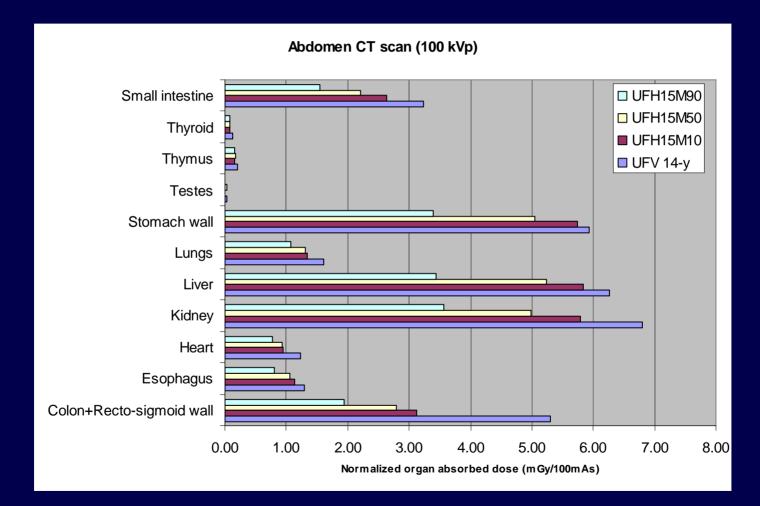
Organ dose per ENTRACE air kerma

Organ dose per EXIT air kerma

Results and Discussions – projection radiographs

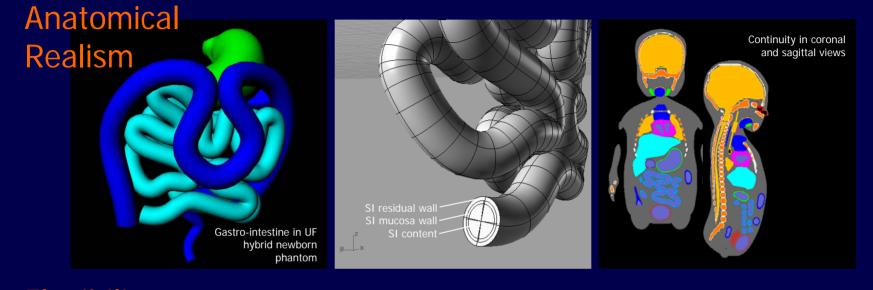

• Effect of subcutaneous fat on organ dose

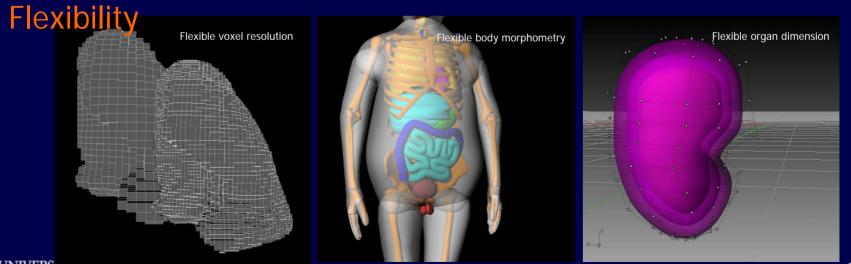
		Dose per entrance air kerma		Dose per exit air kerma			
		10 th	90 th	(10 th - 90 th)/90 th x 100 (%)	10 th	90 th	(90 th - 10 th)/10 th x 100 (%)
Chest PA	Lungs	0.0485	0.0352	38	3.9125	5.2601	34
	Esophagus	0.0255	0.0222	15	2.0560	3.3161	61
Abdomen AP	Colon	0.0816	0.0113	622	11.6781	27.1642	133
	Liver	0.0686	0.0123	458	9.8259	29.5184	200


Results and Discussions – CT simulation

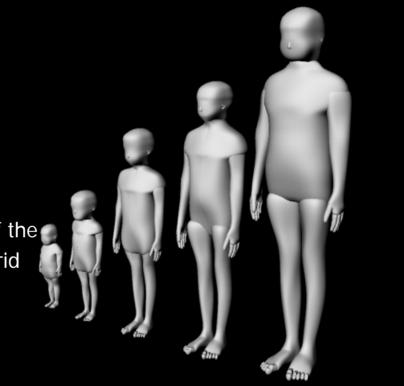
Results and Discussions – CT simulation

Results and Discussions – CT simulation

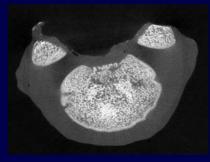

	UF	H15M	UFH15F		
	UFH15M Chest CT	UFH15M Abdomen CT	UFH15F Chest CT	UFH15F Abdomen CT	
Colon	-20.66%	55.67%	-22.57%	39.08%	
Esophagus	42.05%	37.97%	18.18%	14.02%	
Heart	42.28%	18.23%	19.87%	1.43%	
Kidney	29.36%	58.42%	-1.15%	50.62%	
Liver	48.56%	63.79%	13.91%	22.64%	
Lungs	35.85%	23.10%	19.30%	4.55%	
Stomach wall	40.38%	63.36%	13.04%	24.28%	
Testes	4.88%	-0.35%	7.21%	-6.67%	
Thymus	31.90%	-6.84%	12.48%	-7.29%	
Thyroid	17.37%	1.28%	5.47%	-7.06%	
Small intestine	6.56%	64.65%	-2.44%	53.44%	


Percent difference between 10th and 90th phantoms

Conclusions

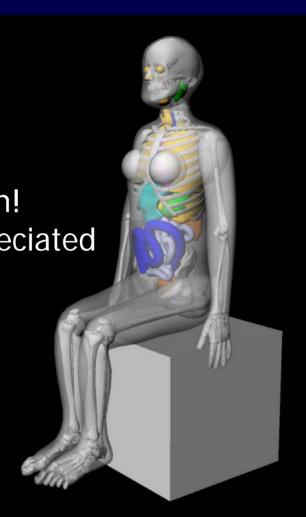


Engir



Future work

- UF hybrid pediatric series
 - 1, 5, 10, and adult male and female
 - Based on live CT images
 - Match ICRP 89 reference data
- Pediatric skeletal models
 - CT and microCT-based pediatric models of the skeleton to accompany each pediatric hybrid phantom of the UF series


microCT of newborn LV

Thank you for your attention! Any questions or comments appreciated

