Statistical Approach to Medical Image Errors Analysis

S. M. Aceil, PhD Dept of Advanced Technology Alcorn State University 1000ASU #360, Alcorn State, MS 39094 (601) 877 2343 saceil@bellsouth.net **CMPWG-II** UF Hilton Hotel Conference Center Gainesville, FL, USA Sept.30- Oct. 3, 2007

Overview of presentation

- System approach, error analysis noise
- The factors that affect the image quality
- Use of error analysis technique
- Statistical example
- Summary

System Approach

- A system is "a group of interrelated inter acting components"; the higher the # of components&steps the more complex sys.
- There is a variation in each components or (step in process) that has normal distribution
- Quality production or service strives to reduce or eliminate the variation.

Noise analysis is related to Quality

- Noise is unwanted information that crowds or could even mask the useful information.
- Reducing or eliminating noise improves the quality.
- In technical spheres Quality is defines as "conformance to specifications"

Factors affecting Image Quality

- Tow Categories 1-Photographic 2-Geometrics
- Contrast*
- Blur
- Noise
- Artifacts
- Spatial and Geometry

^{*}Ref: Physical Principles of Medical Imaging P. Sprawls

Factors affecting image quality

Image Contrast

Image contrast refers to the fractional difference in optical density of brightness between two regions of an image

Some factors influencing contrast

- •Radiographic or subject contrast
 - Tissue thickness
 - •Tissue density
 - •Tissue electron density
 - •Effective atomic number Z
 - •X Ray energy in kV
 - •X Ray spectrum (Al filter)
 - Scatter rejection

•Grid

Collimator

- Image contrast
 - •The radiographic contrast plus :
 - •Film characteristics
 - Screen
 characteristics
 - •Windowing level of CT and DSA

Factors Related to Physics of x-ray

- Peak voltage value has an influence on the beam hardness (beam quality) (kVp)
- It has to be related to medical question
- What is the anatomical structure to investigate?
 - What is the contrast level needed?
 - For a thorax examination : 130 150 kV is suitable to visualize the lung structure
 - While only 65 kV is necessary to see bone structure

Physical factors continued

- The higher the energy, the greater the penetrating power of X Rays
- At very high energy levels, the difference between bone and soft tissue decreases and both become equally transparent
- Image contrast can be enhanced by choosing a lower kVp so that photoelectric interactions are increased
- Higher kVp is required when the contrast is high (chest)

Other Physical Factors

- The mAs controls the quantity of X Rays
- X Ray intensity is directly proportional to the mAs
- Over or under-exposure can be controlled by adjusting the mAs
- If the film is too "white", increasing the mAs will bring up the intensity and optical density
- (Rule of thumb is 15% increase in mAs doubles the intensity)

Effect of kVp-mAs on Image

60 kV - 50 mAs

70 kV - 50 mAs

80 kV - 50 mAs

More Examples, effects of kVp-mAs

70 kV - 25 mAs

70 kV - 50 mAs

70 kV - 80 mAs

Other Factors Affecting Images

- The film as receptor has a major role to play in altering the image contrast
- There are high contrast and high sensitivity films
- The characteristic curve of the film describes the intrinsic properties of the receptor (base + fog, sensitivity, mean gradient, maximum optical density)
- Film processing strongly has a pronounced effect on fog and contrast

Contrast

- Nature has provided limited contrast in the body
- Contrast creating agents are employed to achieve contrast when natural contrast is lacking or not enough (iodine, barium)
- The purpose is to get signals different from the surrounding tissues and make visible organs that are transparent to X Rays

Image Lack of Sharpness

- The boundaries of an organ or lesion may be very sharp but the image shows a lack of sharpness
- Different factors may be responsible for such a degree of "fuzziness" or blurring
- The radiologist viewing the image might express an opinion that the image lacks "detail" or "resolution" (subjective reaction of the viewer to the degree of sharpness present in the image)

Resolution

- Smallest distance that two objects can be separated and still appear distinct
- Example of limits (difrnt limit in difrnt medium)
 - Film screen: 0.01 mm
 - CT: .5 mm
- Other definition: "Point-spread" function
 - Characteristic of a "point" object
 - Point object expected to be point in image
 - Blurring due to imperfections of imaging system
 - Measurement: full-width-at-half-maximum FWHM

Geometric Blur

• As If the focal spot is infinitesimally small, the blur is minimized because of minimal geometric bluntness the focal spot increases, the blur in the image increases

Small focal spot

Large focal spot

Geometric Blur

- Another cause of lack of geometric sharpness is the distance of the receptor from the object
- Moving the receptor away from the object results in an increased lack of sharpness
- N.B.: The smaller the focal size and closer the contact between the object and the film (or receptor), the better the image quality as a result of a reduction in the geometric sharpness

Lack of sharpness in object

- Not all structures in the body have well-defined boundaries (superimposition essentially present in most situations)
- The organs do not have square or rectangular boundaries
- The fidelity with which details in the object are required to be imaged is an essential requirement of any imaging system
- The absence of sharpness, in the subject/object is reflected in the image

Lack of sharpness due to motion

- Common and understandable blur in medical imaging
- Patient movement :
 - uncooperative child
 - organ contraction or relaxation
 - heart beating, breathing etc.
- Voluntary motion can be controlled by keeping examination time short and asking the patient to remain still during the examination

Lack of sharpness due to motion continued

- Shorter exposure times are achieved by the use of fast intensifying screens
- Faster screens result in loss of details (receptor sharpness)
- Further, the use of shorter exposure time has to be compensated with increased mA to achieve a good image
- This often implies use of large focal spot (geometric sharpness)

Lack of receptor sharpness

- The intensifying screen in radiography has a crystal size which is larger than that of the emulsion on the film
- An image obtained without the screen will be sharper than that obtained with the screen, **but** will require much more dose
- The thickness of the screen further results in degradation of sharpness
- On digital imaging, the image displayed at a higher matrix with a finer pixel size has better clarity

Distortion and artifact

- Unequal magnification of various anatomical structures
- Inability to give an accurate impression of the real size, shape and relative positions
- Grid artifact (grid visualized on the film)
- Light spot simulating microcalcifications (dust on the screen)
- Bad film screen contact, bad patient positioning (breast)

Some Statistical Ana Case Results

- 1883 Images were analyzed
- Mean intrafraction and interfraction errors (+/- SD) were 2.17 & 3.7+0.9 mm
- Lateral (x) 2.3<u>+</u>0.9
- Cranio- caudal (y) 3.1<u>+</u>0.9
- Anterior- posterior (z) axes 3 ± 0.7 mm
- Random errors were 2.5, 2.4, & 1.8 mm on the x, y, and z

Noise

- Defined as uncertainty or imprecision of the recording of a signal
- Impressionist painting: precision of object increases with number of dots
- X Ray imaging: when recorded with small number of Xphotons has high degree of uncertainty, more photons give less noise
- Other sources of noise:
 - Grains in radiographic film
 - Large grains in intensifying screens
 - Electronic noise of detector or amplifier

The Image on the Right (*B*) Has More Noise Than the Image on the Left (*A*)

Image Noise

- Information that is not useful is noise
- The snowing in a TV image, the speckles in an ultrasound image are examples of noise
- Noise interferes with visualization of image features useful for diagnosis
- Different components of noise are:
 - Radiation noise ("heel effect")
 - Structure noise (Compton scattering)
 - Receptor noise (non-uniform response to a uniform X Ray beam)
 - Quantum mottle (low photon flux)

Images Produced with Different Exposures Throughout the Wide Dynamic Range of a Digital Radiographic Receptor.

Use of Error analysis Technique

• Relating a set of independent X_i variables to a Dependent variable Y

 $DY/Y = S_i^m S_i^m DX_i^m X_i + S_{m+1}^m S_i^m DX_i^m X_i + \cdots$

- Where each summation represents errors associated with one group of components
- They Include "Systematic & Random" sources of errors.

Noise in film

Noise is characterized by the standard deviation (σ) of the OD measurements in any uniform region of the film

Statistical parameters as tool of Error analysis

Mean
$$x = S^n_{i=1} x_i / n$$

Erms =
$$[S_{i=1}^{n} S_{i}^{2}]1/2$$

Gradients of mean

Gradient of rms

Summary

- Many Instrumental, procedural and performance factors influence the image quality at various levels
- Statistical techniques are able to quantify some of the factors affecting image analysis that in turn can help to improve image quality.

Some of References

- Many sites on internet, plus
- Hendee WR, Riternour ER, eds. Medical Imaging physics, 3rd ed. St. Louis: Mosby
- Sprawls Perry Jr. Ed. Physical principles of medical imaging. Maddison: Medical Physics Publishing
- Moores BM, Wall BF, Eriskat H and Schibilla H, eds. Optimization of image quality and patient exposures in diagnostic radiology. London: British Institute of Radiology.

Alcorn State University Health Physics & Radiation Technology Program

לי