A³MCNP Computer Exercises

by

A. Haghighat

A3MCNP Computer Exercises p. 1

Using A³MCNP

Here, we will utilize the simplified VENUS problem to demonstrate the A³MCNP code.

Copy the necessary input files

cp /usr/local/workshop/a3/cpa3mcnp . ./cpa3mcnp cd a3

Discussion on the new input information for A³MCNP

vi venus.a31 vi venus.a32 vi venus.a33 vi sailor96_zaid.in (given as part of the code)

COMPUTER EXERCISE #1

1. Run A³MCNP

runa3_1 venus sailor96 runa3_2 venus runa3_3 venus

2. Run MCNP4C2

run3_0 venus

3. Compare the results

vi venus_3o (A³MCNP output) *vi venus_0o* (MCNP4C2 output)

SIMPLIFIED VENUS-3 MODEL

file: venus

message: DATAPATH=/usr/mcnpxs

```
TITLE: Simplified VENUS-3 Model
С
        10th International Training Course/Workshop on
С
        Methodologies for Particle Transport Simulation...,
С
С
    CELL CARDS
С
    core region
С
    1 7.16E-02 (2 -4 10 -13 20 -21)
1
               :(2 -4 10 -11 21 -23)
                                             $ fuel1
2
     2 7.16E-02 (2 -4 10 -11 23 -25)
                                             $ fuel2a
    2 7.16E-02 (2 -4 13 -14
2 7.16E-02 (3 -4 14 -15
3
                               20 -21)
                                             $ fuel2b
                                             $ fuel2c (above PLSA)
4
                               20 -21)
    3 9.34E-02 (2 -3 14 -15
                               20 -21)
                                            $ PLSA
5
                                            $ baffle1
    4 -7.90
                (2 -4 10 -12
                               25 -26)
6
                :(2 -4 11 -12
                               21 -25)
                                             $ baffle2
                : (2 -4 12 -15 21 -22)
                                             $ baffle3
               :(2 -4 15 -16 20 -22)
                                             $ baffle4
7
    5 -1.00
                (2 -4 10 -12
                               26 -31)
                                             $ water (baffle-barrel)
                :(2 -4
                           12
                               22 -31)
                :(2 -4 16 -31 20 -22)
     4 -7.90
8
                 2 -4 10 20 31 -32
                                             $ barrel
9
    5 -1.00
                 2 -4
                       10
                           20
                               32 -33
                                             $ water (barrel-vessel)
    4 -7.90
                 2 -4 10 20 33 -34
10
                                             $ vessel
11
    5 -1.00
                 2 -4 10 20 34 -19 -29 #12 $ outside vessel
12
    6 -2.70
                 2 -4 -41
                                            $ dosimeter
                 1 -2 10 -19 20 -29
13
    5 -1.00
                                             $ bottom reflector
                 4 -5 10 -19 20 -29
14
    5 -1.00
                                            $ top reflector
                (-1:5:-10:19:-20:29)
15
    0
                                            $ outside
C
    SURFACE CARDS
С
С
С
    NOTE: * indicates reflective boundaries
С
С
    top and bottom model boundaries
1
    pz
         95.00
                      $ bottom of model
    pz 105.00
                       $ fuel bottom
2
3
    pz 130.00
                      $ fuel midplane
    pz 155.00
pz 165.00
                       $ fuel top
4
5
                       $ top of model
С
    symmetry boundaries/outer boundaries
С
*10
    px 0.0
19
          65.573
    рх
*20 py
         0.0
         65.573
29
    ру
С
    planes (normal to x-axis)
С
                   $ inner square/baffle in
    px 18.90
11
12
    хq
          21.758
                        $ inner square/baffle out
                        $ fuel1/fuel2 boundary
13
          26.46
    рх
14
          31.50
                       $ fuel/PLSA boundary
    px
15
    рx
          37.80
                        $ core/baffle boundary
16
          40.658
                        $ baffle outer boundary
    рх
С
    planes (normal to y-axis)
С
    py 18.90
21
                        $ inner square/baffle in
           21.758
2.2
                        $ inner square/baffle out
    ру
          26.46
                        $ fuel1/fuel2 boundary
23
    рy
          37.80
25
                        $ core/baffle boundary
    ру
26
          40.658
                        $ baffle outer boundary
    ру
С
    outside of core
С
31
    cz 48.283
                        $ barrel IR
   CZ
                        $ barrel OR
32
          53.273
33
        57.545
                        $ vessel IR
   CZ
```

```
34
   cz 65.573
                       $ vessel OR
С
    cavity dosimeter at 45 deg
С
   c/z 60.0 60.0 3.00 $ (c/z - cylinder parallel to z-axis)
41
С
    segmenting planes
42
    pz 115
    pz 125
43
44 pz 135
45
   pz 145.
С
    DATA CARDS
С
mode n
                    $ neutron only
imp:n 1 13r 0
                    $ set all cell importances to unity
С
С
    TALLY CARDS
   default energy bins (SAILOR/BUGLE group structure) for tallying
С
     1.003E+00 1.353E+00 1.653E+00 1.920E+00 2.231E+00 2.346E+00
e0
     2.365E+00 2.466E+00 2.725E+00 3.012E+00 3.679E+00 4.966E+00
     6.065E+00 7.408E+00 8.607E+00 1.000E+01 1.221E+01 1.419E+01
     1.733E+01
С
f14:n (1 2 3 4)
fc14
     volume flux in the core
fm14 1.271E+13 $ Source normalization factor
С
f24:n 10
fc24
      volume flux in vessel
sd24
     38814.0 $ volume of pv (1/4)*(Ro^2 - Ri^2)*pi*h
fm24 1.271E+13 $ Source normalization factor
С
f32:n 33
fc32 surface flux, vessel inner surface
sd32 4519.57 $ inner area
fm32 1.271E+13 $ Source normalization factor
С
f42:n 34
fc42 surface flux, vessel outer surface
      5150.09 $ outer area
sd42
fm42 1.271E+13 $ Source normalization factor
С
f104:n 12
fc104 volume flux in cavity dosimeter
fq104 e s
fm104 1.271E+13 $ Source normalization factor
f114:n 12
fcll4 Cu(n,a) reaction rate (BUGLE-96) in cavity dosimeter
fmll4 1.271E+13 $ Source normalization factor
     Note: response cross sections for the Cu(n,a) reaction are from
С
           the BUGLE-96 multigroup library (Ref: RSICC DLC-185)
С
С
     energy multiplier card
em114 0.0000E-00 1.6179E-08 2.4778E-07 6.7643E-07 8.1765E-07 9.4358E-07
       2.9883E-06 8.2245E-06 4.8528E-05 5.9165E-04 3.3924E-03 1.0490E-02
      1.8464E-02 2.7224E-02 3.7670E-02 4.3444E-02 3.2358E-02
e114 1.653E+00
                  1.920E+00
                               2.231E+00
                                          2.346E+00
                                                       2.365E+00
                                                                   2.466E+00
       2.725E+00 3.012E+00 3.679E+00 4.966E+00 6.065E+00
                                                                   7.408E+00
      8.607E+00 1.000E+01 1.221E+01 1.419E+01 1.733E+01
С
f124:n 12
fc124 Cu(n,a) reaction rate (CE ENDF/B-VI) in cavity dosimeter
     Note: response cross sections for the Cu(n,a) reaction are from
С
            the MCNP continuous energy (CE) ENDF/B-VI library (Ref: RSICC DLC-189)
С
      energy multiplier card
С
fm124 1.271E+13 $ Source normalization factor
                           material 100, reaction type 107 (n,alpha)
С
С
С
С
С
    MATERIAL CARDS
С
```

```
atom density = 7.16E-02
С
     core mixture

    1001.60c
    4.19E-01
    8016.60c
    4.20E-01
    5010.60c
    4.19E-05

    92235.60c
    2.79E-03
    92238.60c
    9.78E-02
    40000.60c
    5.59E-02

m1
      24050.60c 2.43E-05 24052.60c 4.68E-04 24053.60c 5.31E-05
      24054.60c 1.32E-05 26054.60c 3.30E-05 26056.60c 5.13E-04
      26057.60c 1.17E-04 26058.60c 1.57E-06 28058.60c 2.86E-03 28060.60c 1.09E-03 28061.60c 4.73E-05 28062.60c 1.50E-04
      28064.60c 3.81E-05
С
      core mixture
                               atom density = 7.16E-02
С
m2
      1001.60c 4.19E-01 8016.60c 4.20E-01 5010.60c 4.19E-05
      92235.60c 2.79E-03 92238.60c 9.78E-02 40000.60c 5.59E-02
      24050.60c 2.43E-05 24052.60c 4.68E-04 24053.60c 5.31E-05 24054.60c 1.32E-05 26054.60c 3.30E-05 26056.60c 5.13E-04
      26057.60c 1.17E-04 26058.60c 1.57E-06 28058.60c 2.86E-03
      28060.60c 1.09E-03 28061.60c 4.73E-05 28062.60c 1.50E-04
      28064.60c 3.81E-05
С
С
    PLSA
                              atom density = 7.16E-02

        1001.60c
        4.19E-01
        8016.60c
        4.20E-01
        5010.60c
        4.19E-05

        92235.60c
        2.79E-03
        92238.60c
        9.78E-02
        40000.60c
        5.59E-02

m3
      24050.60c 2.43E-05 24052.60c 4.68E-04 24053.60c 5.31E-05
      24054.60c 1.32E-05 26054.60c 3.30E-05 26056.60c 5.13E-04
      26057.60c 1.17E-04 26058.60c 1.57E-06 28058.60c 2.86E-03
      28060.60c 1.09E-03 28061.60c 4.73E-05 28062.60c 1.50E-04
      28064.60c 3.81E-05
С
      stainless steel
                              atom density = 8.69E-02
С
      6000.60c 2.73E-03 14000.60c 1.03E-02 25055.60c 1.75E-02
m4
      24050.60c 8.70E-03 24052.60c 1.68E-01 24053.60c 1.90E-02
      24054.60c 4.73E-03
                              26054.60c 3.96E-02 26056.60c 6.15E-01
      26057.60c 1.41E-02 26058.60c 1.88E-03 28058.60c 6.72E-02
      28060.60c 2.57E-02 28061.60c 1.11E-03 28062.60c 3.53E-03
      28064.60c 8.95E-04
С
С
      water
                               atom density =
                              8016.60c 3.33E-01 5010.60c 8.00E-05
m5
      1001.60c 6.67E-01
С
С
      aluminum
                               atom density = 6.02E-02
m6 13027.60c 1.00E+00
С
С
     response cross section for Cu-63(n,alpha) from CE ENDV/B-VI
m100 29063.60c 1.0
С
С
          $ fission in all cells is treated as capture
nonu
С
      neutron histories are terminated if their energy falls below 5 MeV
С
cut:n j 5.00
c print 110 $ print table 110 - first 50 histories
print
С
             $ void material region.
$ time cutoff card (minutes)
Trif particle
С
      void
ctme 02
     nps 100000 $ follow 1E+5 particle histories
С
С
```

file: venus.sdef

С											
c SOURCE CARDS											
sdei e	rg=al pos=	α2									
C		T 7 4 7									
C	SAILOR/BUG	LE 4/-group	structure	0 764 7	1 055- 6	F 042- C					
sil h	1.000e-11	1.000e-7	4.140e-7	8.764e-7	1.855e-6	5.043e-6					
	1.068e-5	3.727e-5	1.013e-4	2.144e-4	4.540e-4	1.585e-3					
	3.355e-3	7.102e-3	1.503e-2	2.188e-2	2.418e-2	2.606e-2					
	3.183e-2	4.087e-2	6.738e-2	1.111e-1	1.832e-1	2.972e-1					
	3.688e-1	4.979e-1	6.081e-1	7.427e-1	8.208e-1	1.003e+0					
	1.353e+0	1.653e+0	1.920e+0	2.231e+0	2.346e+0	2.365e+0					
	2.466e+0	2.725e+0	3.012e+0	3.679e+0	4.966e+0	6.065e+0					
	7.408e+0	8.607e+0	1.000e+1	1.221e+1	1.419e+1	1.733e+1					
С	typical PW	R fission sp	pectrum								
spld0	1.3464e-1	1 1.0080e-10) 2.3789e-1	.0 7.3247e-	10 3.7774e-0	9 1.0123e-08	3				
	8.2702e-0	8 3.4003e-0'	7 9.1003e-0	07 2.8049e-	06 2.2923e-0	5 5.6253e-05	5				
	1.7296e-0	4 5.3045e-04	4 5.9161e-0	04 2.2158e-	04 1.8892e-0	4 6.2068e-04	ł				
	1.0843e-0	3 3.8297e-0	3 7.9326e-0)3 1.6195e-	02 3.0840e-0	2 2.1559e-02	2				
	4.1541e-0	2 3.7103e-02	2 4.6232e-0	02 2.6923e-	02 6.2179e-0	2 1.1339e-01	Ĺ				
	8.8005e-0	2 7.0140e-02	2 7.1859e-0	02 2.3970e-	02 3.8290e-0	3 1.9742e-02	2				
	4.6115e-0	2 4.4058e-02	2 7.8188e-0	02 8.3999e-	02 3.2243e-0	2 1.6918e-02	2				
	5.9238e-0	3 2.6238e-0	3 1.1094e-0)3 1.8428e-	04 4.2592e-0	5					
С											
С	source poi	nt positions	5								
si2 l											
	6.93 .6	3 106.75	8.19	.63 106.75	9.45	.63 106.75	5				
	10.71 .6	3 106.75	11.97	.63 106.75	13.23	.63 106.75	5				
	14.49 .6	3 106.75	15.75	.63 106.75	17.01	.63 106.75	5				
	18.27 .6	3 106.75	19.53	.63 106.75	20.79	.63 106.75	5				
	22.05 .6	3 106.75	23.31	.63 106.75	24.57	.63 106.75	5				
	25.83 .6	3 106.75	27.09	.63 106.75	28.35	.63 106.75	5				
	29.61 .6	3 106.75	30.87	.63 106.75	6.93	1.89 106.75	5				
С											
С	source poi	nt probabil:	ities								
sp2 d											
	.7865 .8	719 .8842	.8914	.8886 .9	.9168	.9309 .9	9331				
	.8850 .8	751 .8599	.8356	.7946 .7	575 .7409	.5792 .5	5665				
	.5511 .5	350 .7770	.8658	.8880 .8	.8985	.9163 .9	320				
	.9331 .8	822 .8698	.8552	.8314 .7	940 .7528	.7441 .5	5806				
	.5657 .5	451 .5321	.7675	.8658 .8	866 .8946	.8955 .8	3998				
	.9125 .9	344 .9248	.8774	.8632 .8	446 .8157	.7840 .7	7372				
	.7424 .5	821 .5630	.5392	.5292 .7	491 .8708	.8857 .8	3946				

...

file: sailor96_zaid.in

142	2	:	= mtr	>											
100	01	3	This	s fi	le c	orrea	spond	ls to	o the	SA	ILORS	96 1:	ibrai	ſУ	
501	10	7													
4000	00	27													
9223	35	43													
9223	38	47													
801	16	51													
2400	00	63													
2405	50	63													
2405	52	63													
2405	53	63													
2405	54	63													
2505	55	67													
2600	00	71													
2605	54	71													
2605	56	71													
2605	57	71													
2605	58	71													
2800	00	75													
2805	58	75													
2806	50	75													
2806	51	75													
2806	52	75													
2806	54	75													
600	00	79													
1102	23	95													
1200	00	99													
1302	27	103													
1400	00	107													
1900	00	111													
2000	00	115													
t															
13															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
16	17	18	18	20	21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	
106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	
136	137	138	139	140	141	142									

file: venus.a31

```
С
c ----- A3MCNP parameters (step 1, Sn mesh generation)
С
С
       isn isrcc igm nsctm iht ihm iups neut
sngp
       2 12 47 3 3 70 0 47
С
С
    Sn spatial mesh input
     x1 x2 y1 y2
           x2 y1 y2 z1 z2 xt yt zt pzlev
64. 0. 64. 95. 165.0 3.2 3.2 10. -7
С
snmsh 0.
С
   back-thinning parameters for different materials
С
snthn 3.2 3.2 3.2 3.2 3.2 3.2 3.2
С
    Sn boundary condition - snbc()=(ibl,ibr,ibi,ibo,ibb,ibt)
С
     ibl ibr ibi ibo ibb ibt
С
      1 0 1 0 0 0
snbc
С
    Sn energy group structure
С
    SAILOR 47-group neutron structure
С
snsi 1.0e-7 4.14e-7 8.764e-7 1.855e-6 5.043e-6 1.068e-5
      3.727e-5 1.013e-4 2.144e-4 4.454e-4 1.585e-3 3.355e-3
      7.102e-3 1.503e-2 2.188e-2 2.418e-2 2.606e-2 3.183e-2
      4.087e-2 6.738e-2 1.111e-1 1.832e-1 2.972e-1 3.688e-1
      4.979e-1 6.081e-1 7.427e-1 8.208e-1 1.003 1.353 1.653
      1.920 2.231 2.346 2.365 2.466 2.725 3.012 3.679 4.966
      6.065 7.408 8.607 1.000e+1 1.221e+1 1.419e+1 1.733e+1
snsp 0.0 39r
      .003 .01 .012 .018 .02 .04 .03
snacc 2 2
    6.4 32.0 $coarse-mesh interfaces along x
    6.4 32.0 $coarse-mesh interfaces along y
```

file: venus.a32

```
c
c ---- A3MCNP parameters (step 2, variance reduction parameters generation)
c
wwp:n 5 3 5
wwa:n 47 0 1
```

file: venus.a33

c c ----- A3MCNP parameters (step 3, accelerated simulation) c wwp:n 5 3 5 wwa:n 47 1 1

A³MCNP COMPUTER EXERCISE #2

Reduce the size of the detector (adjoint source)

1. Edit "venus" to divide Cell 12 into 2 cells: 12 and 121

vi venus

Before: 11 5 -1.00 2 -4 10 20 34 -19 -29 #12 \$ outside vessel 12 6 -2.70 2 -4 -41 \$ dosimeter After: 11 5 -1.00 2 -4 10 20 34 -19 -29 #12 **#121** \$ outside vessel 12 6 -2.70 **45** -4 -41 \$ dosimeter **121 6 -2.70 2 -45 -41 \$ dosimeter 2**

2. Modify cell importance values

Before: imp:n 1 13r 0 \$ set all cell importances to unity

After: imp:n 1 **14r** 0 \$ set all cell importances to unity

- 3. Run MCNP4C and A³MCNP
- 4. Examine output files

vi venus_0o

vi venus_3o

SIMPLIFIED VENUS-3 MODEL Exercise #2

<u>Before</u>

<u>After</u>

15

A3MCNP Computer Exercises p. 11

A³MCNP COMPUTER EXERCISE #3

Coarsen fine meshes for $S_{\ensuremath{\text{N}}}$ adjoint calculation using the backthinning approach

1. Edit "venus.a31" to apply the back-thinning option

vi venus.a31

Before:

c isn isrcc igm nsctm iht ihm iups neut sngp 2 12 47 3 3 70 0 47

After:

c isn isrcc igm nsctm iht ihm iups neut sngp **1** 12 47 3 3 70 0 47

2. Run A³MCNP Observe the reduction of number of fine meshes

> runa3_1 venus sailor96 runa3_2 venus runa3_3 venus

4. Examine output files Look for tally fluctuation charts at the end of file Compare results with and without back-thinning

vi venus_3o

SIMPLIFIED VENUS-3 MODEL

Exercise #3, uniform mesh distribution

TORT Mesh Generation by A3MCNP

SIMPLIFIED VENUS-3 MODEL

Exercise #3, with back-thinning

TORT Mesh Generation by A3MCNP

