

Parallel PENTRAN Applications

G. E. Sjoden and A. Haghighat Nuclear and Radiological Engineering University of Florida

Overview

- Introduction
- Parallel Computing & MPI
- Boltzmann & Transport
- PENTRAN™ Code System
- Problem Solving Experience
- Discussion and Summary
- Questions

What is Parallel Computing?

- Computer with many processors
 - "Lumped" or Network "Distributed"
 - Divide problem up on processors

About MPI...

- MPI (Message Passing Interface) Library
 - Began with "MPI Vendor Forum" May 1994
 - Formalized in 1995
 - For distributed memory machines (FORTRAN, C, other language variants support)
- ANSI-like "standard" in message passing
 - Process com groups, parallel decomposition topologies
 - Port code directly to architectures running MPI
 - For any parallel architecture/cluster, SCANs

Amdahl's Law: Limited Speedup

- (Parallel Code Fraction = f)
- $S_p = ((1-f) + f/p + T_c/T_s)^{-1}$
- Speedup= $S_p = T_s/T_{p_s}$ Efficiency= $E = S_p/P$
- If f = 0.8, then max $S_p = 5.0$ as P > Infinity

Distributed Memory Programming

- Efficient message passing algorithms...
 - View message passing as a last resort
 - Minimize serialization, barriers
 - Use a partitioned memory storage of data
 - Only way to solve larger problems
 - Process mapping arrays to determine "who's where"
- Overall...
 - Use a coarse-grained code structure
 - Many flops performed before messages passed
 - Don't forget about Amdahl's Law

3-D Boltzmann Equation

$$(\mu \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y} + \xi \frac{\partial}{\partial z}) \; \psi_{g}(x,y,z,\mu,\varphi) + \sigma_{g}(x,y,z) \; \psi_{g}(x,y,z,\mu,\varphi) =$$

$$\sum_{g'=1}^G \sum_{l=0}^L \left(2l+1\right) \; \sigma_{s,g'\to g,l}(x,y,z) \; \{ P_l(\mu) \phi_{g',l}(x,y,z) + 2 \sum_{k=1}^l \frac{(l-k)!}{(l+k)!} P_l^k(\mu) \; .$$

$$\left[\phi_{C_{\mathcal{E}'}j}^{k}(x,y,z)\cos(k\varphi)+\phi_{S_{\mathcal{E}'},l}^{k}(x,y,z)\sin(k\varphi)\right]\right\}+\frac{\chi_{\mathcal{E}}}{k_{0}}\sum_{g'=1}^{G}\nu\sigma_{fg'}(x,y,z)|\phi_{g',0}(x,y,z)|$$

- Boltzmann Transport Equation
 - Track particles traveling in different
 - directions
 - over a range of <u>energies</u>
 - in different spatial locations in 3-D

Transport Theory

- Boltzmann transport methods
 - Monte Carlo method
 - Discrete Ordinates (S_N) method
 - Each has specific ...Advantages (+)

Disadvantages (-)
Issues

Both methods can take advantage of parallel processing!

Monte Carlo

Advantages

- Traditional, straight forward
- Geometrically precise
- Robust particle physics--Continuous-Energy xsec
- Parallelization obvious: particle histories

Disadvantages:

- Processing time, Non-analog variance reduction
- Inevitable uncertainties and Central LT
- "Global" solution difficult to obtain
- Results can be limited in application

Discrete Ordinates

Advantages

- Model entire geometry
- Fast and accurate
- Global flux distribution
- Directly allows for burnup, etc

Disadvantages:

- Proper multi-group cross sections
- Geometry discretized
- Memory, storage, differencing scheme issues
- Parallelization--coupling in angle, energy, space

- Parallel Environment Neutral-particle TRANsport
 - Introduced in 1996, under continuous development that began in 1995 by Sjoden and Haghighat
 - Parallel S_N in <u>angle</u>, <u>energy</u>, and <u>space</u> & <u>I/O</u>
 - ANSI FORTRAN over 38,000 lines
 - Industry standard FIDO input
 - Solves 3-D Cartesian, multigroup, anisotropic transport problems
 - Forward and adjoint mode, Fixed source, criticality eigenvalue problems

- Uses MPI Message Passing Interface library
 - Standard for MIMD systems
- Performs all I/O in parallel by each processor
- Uses a local, partitioned memory for memory intensive arrays (angular fluxes, etc)
- Auto-tuning feature for optimum memory allocation
- Builds processor communicators
 - minimized message traffic
 - communication across decomposition "planes" of processors

- Performs automatic scheduling based on a userspecified decomposition weighting vector
- Allows for adaptive differencing among coarse mesh zones using problem physics
- Adaptive Differencing Strategy...
 - Diamond Zero (DZ)
 - Directional Theta-Weighted differencing (DTW)
 - Exponential-Directional Weighted (EDW)
 - Exponential-Directional Iterative (EDI) (see Feb07 NSE)

(4)

- Allows for a fully discontinuous variable meshing between coarse meshes
- Uses a novel higher order mesh coupling scheme: Taylor Projection Mesh Coupling (TPMC)
- Accelerations...
 - Two-grid 3-D TPMC-coupled "/" multi-grid transport acceleration
 - PCR with a zoned rebalance acceleration
- Multigroup & One-level SI schemes

- Allows for automatic Red-Black or Block-Jacobi
- Automatic load balancing
- Anisotropic scattering via Legendre Pn moments to arbitrary order
- 3-D angular quadratures level symmetric through S20, Legendre-Chebychev (Pn-Tn) to arbitrary order
- Vacuum, reflective, group-albedo boundaries
- Volumetric sources & plane surface fluxes
- PENDATA, PENMSH-XP utilities

PENTRAN

- Demonstrated 97% to 98% parallel fraction
 - Performance depends on problem, decomposition
 - Development focus on high accuracy & parallel efficiency
 - Numerous applications over the past 12 years
- Speedups of ~50 readily achievable
 - Demonstrated scalability
 - www.hswtech.com

3-D Discrete Ordinates

Balance Equation...

"out"

$$\frac{|\mu_m|}{\Delta x}(\psi_{\text{out}x} - \psi_{\text{in}x}) + \frac{|\eta_m|}{\Delta y}(\psi_{\text{out}y} - \psi_{\text{in}y}) + \frac{|\xi_m|}{\Delta z}(\psi_{\text{out}z} - \psi_{\text{in}z}) + \sigma \psi_A = q_A$$

$$\psi_{\text{out}\,x} = \frac{1}{\Delta v \Delta z} \int_0^{\Delta y} \int_0^{\Delta z} \psi_m(\Delta x, y, z) P_0(y) P_0(z) \, dy \, dz$$

Taylor Projection Mesh Coupling

- Discontinuous grid densities
 - Allow high definition in ROIs, parallel load balance
- First Order Taylor projection of angular fluxes at interface between discontinuous grid surfaces
 - Flow Step
 - Particle Balance Step
 - Important for "Coarse to Fine"

$$\psi_{\text{inB}} = \psi_{\text{outA}} + b \Delta y_A \frac{\partial \psi}{\partial y}|_A + c \Delta z_A \frac{\partial \psi}{\partial z}|_A + O(\Delta^2)$$

A "Demo" Problem

- Annular region (38.1 cm OD)
 encompassing cylinder in x-y-z
 - k=1.00*, fast metal systems,93.263% U-235 (tare U-238)
 - Placed in vacuum, non-metal regions are void
- 16-G Hansen-Roach MG xsecs
 - Zero pot dilute absorber O(MeV)n
 - <0.4% n groups 7 to 16 (< 17 keV)</p>
 - Uncertainties lead to ~1%

*(KENO results from Wagner et al, 1992)

Geometric Model Setup

- PENMESH-XP- automatically sets up problem
 - You define shapes, 3-D intervals, it does the rest...
- Example: Ring Problem, 4 coarse meshes:

Results: Ring Problem

k=0.994 PENTRAN & MCNP-MG

Venus-3 Shielding Problem

- Owned/operated by SCK-CEN in Mol, Belgium
- Practical model of a PWR
 - 16 "15x15" sub- assemblies, 1.26 cm pitch
- Types of fuel:
 - 4% enriched uranium, 3.3% enriched uranium
 - partial length 3.3% fuel upper/ stainless steel lower
- Other unique features
 - Water hole, SS baffle, Pyrex rods among 4% rods
- OECD Source, G1-26 of BUGLE-96, P3-S8
 - PENTRAN Runs for 4, 8, 16, 32 SP2 Processors

Venus-3 Shielding Problem

Figure 1a: Z-Level 1

Figure 1b: Z-Level 2

Figure 1c: Z-Level 3

Figure 1d: Z-Level 4

Venus-3

- PENMSH-XP code used to generate 3-D Cartesian Grid
- ~85,000 cells
- 26 Groups
- P3-S8 Discrete Ordinates
- Group 1 Flux Solution:

Figure 2: 3-D Mesh and Material distribution of PENTRAN Verus-3 Model (upper reflector not shown)

Figure 3: Group 1 Flux Distribution for PENTRAN Verus-3 Model

Venus-3 Results

- Compared 370 Measured Rxn Rates (Ni, In, Al dosimeters)
- vs Integral Rxn Rates computed from PENTRAN
 P3-S8 26 group-dependent fluxes.
- 95% C/E values +/-10%; 5% within +/-15% (near P/L rods).

Comparison with others

C/E Equivalent Fission Flux for the ⁵⁸Ni(n,p) reaction

Comparison with others C/E Equivalent Fission Flux for the ¹¹⁵In(n,n') reaction

Comparison with others C/E Equivalent Fission Flux for the 27 Al(n, α) reaction

PENTRAN results are very close to experimental results; more than 95% of the Calculated-to-experimental (C/E) values are within ±10%, and only 5% of values within ±10% and ±15%.

Venus-3 Parallel Performance

Table II: Dosimeter Number Locations in Regions of Venus-3

Case	Processors	A/G/S	Wall-clock	Speed-Up	Efficiency
		Decomposition	Time, min	(4-node base)	
1	4 (1-set)	4/1/1	551.8	1.00	_
2	8 (2-sets)	8/1/1	311.9	1.77	88
3	16 (4-sets)	8/1/2	153.3	3.60	90
4	32 (8-sets)	8/1/4	84.3	6.54	82

Haghighat, A., H. Ait Abderrahim, and G. Sjoden, "Accuracy and Parallel Performance of PENTRAN Using the VENUS-3 Benchmark Experiment," **ASTM STP 1398 on Reactor Dosimetry at the 10**th **International Symposium on Reactor Dosimetry**, Osaka, Japan, 1999.

HI-STORM Cask Simulation

- 24 PWR Assemblies
- 68 BWR Assemblies
- 1 Multi-purpose Canister (MPC)
- 6.7 cm for air flow gap

Spent Fuel Storage Cask Modeling

- Height ~ 610 cm
- Shell O.D. ~340 cm
- Shell I.D. ~187 cm
- Empty Weight 269,000 lbs (55.3 MT)
- Max. Loaded Weight 358,000 lbs (162.4 MT)

'Large' and 'Small' S_N Cask Models

'Large' model has more meshes in the concrete and air.

Cask S_N Models Summary

- 'Large' Model
- CASK library (22n, 18g)
- 17 Materials
- 318,426 fine meshes
 (1000 coarse meshes)
 (40 z-levels)
- P₃, S₁₂ (168 directions)
- 1.48 GB per processor8 processors(~12 GB Total)

- 'Small' Model
- CASK library (22n, 18g)
- 17 Materials
- 195,144 fine meshes
 (1000 coarse meshes)
 (40 z-levels)
- P₃, S₁₂ (168 directions)
- 1.15 GB per processor8 processors(~9.2 GB Total)

Cask 3-D Flux Distribution

Cask Comparison Four Annular Segments Near Source Centerline (300 cm), 'Large' Model

Monte Carlo Results				PENTRAN/MC	
A ³ MCNP	MCNP	MCNP	-		
Cont. Energy	Cont. Energy	Multigroup			
[(mRem/hr)/ n/cm ² /s]	[(mRem/hr)/ n/cm ² /s]	[(mRem/hr)/ n/cm ² /s]	Multi- group	Cont. Energy	
1.75E-04 (0.91%)	1.78E-04 (1.25%)	1.25E-04 (1.30%)	1.04	0.74	
2.12E-04 (0.83%)	2.13E-04 (1.14%)	1.50E-04 (1.18%)	1.04	0.74	
1.98E-04 (0.95%)	1.97E-04 (1.19%)	1.39E-04 (1.23%)	1.04	0.73	
1.43E-04 (1.09%)	1.42E-04 (1.41%)	1.00E-04 (1.46%)	1.04	0.73	

'Small' Model (PENTRAN/MC)

- Multigroup PENTRAN/MC average: 1.05
- Continuous PENTRAN/MC energy average: 0.74 (due to CASK MG library)

Cask Model Timing Results

MC is an average in four annular tally segments (Axial Mid-plane) $(1\sigma \text{ Relative Error} = 1\%)$

		Dose Ratio to		Run Time	
Model	# CPU	Reference	FOM	(hrs)	Speedup
A ³ MCNP Cont. Energy	1	1.00	109	1.5	140
Unbiased Cont. Energy	8	0.99	0.78	214	1.0
Unbiased Multigroup	8	0.70	0.46	362	0.6
PENTRAN 'Large' Model	8	0.74		165	1.3
PENTRAN 'Small' Model	8	0.74		123	1.7

Cask Performance Comparison: S_N and MC

Model	Run Time			
Model	# CPU	(hrs)	Values/Hour	
A ³ MCNP Cont. Energy	1	2.5	1,856	
Unbiased Cont. Energy	8	140	30	
Unbiased Multigroup	8	220	19	
PENTRAN 'Large' Model	8	165	42,100	
PENTRAN 'Small' Model	8	123	35,000	

BWR Core Shroud Problem

- BWR reactor and Core Shroud Assembly...
- ...with baffles, jet pumps, steam voids, etc.
- (Top) 67 Group P3-S8 coupled neutron-gamma calculation
- 0 265,264 fine mesh cells
- Solved in 12 hours on 48 IBM-SP2 processors, 8 processors angular, 6 processors spatial decomposition.

BWR Core Shroud Results

- Displacement per Atom (DPA) in the core shroud shows intense radiation damage where fuel is close to the shroud.
- Results were verified independently by Monte Carlo computations
- Multigroup PENTRAN (using BUGLE-96) values were within 5-15% of continuous energy MCNP values.

(Kucukboyaci, et. al, 2000).

C5G7 MOX Benchmark

- OECD/NEA C5G7 MOX 2-D Benchmark Problem
- PENTRAN Mesh distribution
- Specific pins represented among 229,551 spatial meshes
- S16 quadrature (228 directions)
- 7 groups

C5G7 MOX Benchmark Results

- PENTRAN power distribution
 - keff=1.18760
 - within <0.1% of MCNP
- Relative power difference from MCNP avg difference is 0.88%
- Compared to a statistical MC error 0.4% to 1.24%.
- 3-D unrodded case
 - modeled with 946,080 spatial mesh cells
 - keff=1.14323, +/-<0.09% of MCNP
 - (Yi and Haghighat, 2004).

Recent Work for Industry

Gamma transport problem/assessment

Recent Work for Industry (2)

Relative Dose as a Function of Source Height

Gamma transport problem/assessment

PENBURN 3-D Burnup Module Sponsored by the US Air Force

- Goal: Construct a 3-D zoned fuel burnup solver compatible with multiprocessing
- Solution of nuclide chains is obtained via quasistatic burnup steps
 - Explicit Bateman solver
- Distribute chains across processors

PENBURN 3-D Burnup Module (2)

Bateman's equations are stored using "path matrices" with "chain
Progress in 3-D Reactor Core simulation (Work with T. Mock, K. Manualo):

Progress in 3-D Reactor Core simulation (Work with T. Mock, K. Manualo):

$$N_{i} = \sum_{l=1}^{i-1} \left[N_{l}^{0} \xi_{l} \xi_{l+1} \cdots \xi_{l-1} \sum_{j=l}^{i} \frac{e^{-\mu_{j}t}}{\prod\limits_{\substack{k=l\\k\neq j}}^{i} (\mu_{k} - \mu_{j})} \right] + N_{i}^{0} e^{-\mu_{i}t}$$

X-Ray Modeling ...

- 90 m³ room discretized into ~131,000 3-D cells
- PENMSHTM code (8 "z-levels" floor to ceiling)
- BUGLE-96: last 4-group photon xsecs
- 80kV radiographic W-anode32 mAs x-ray burst
 - Rotating anode water cooled source
- Hybrid X-ray Spectrum
 - Characteristic X-rays
 - Bremsstrahlung continuum

X-Ray Modeling ... "z-level 3"

X-Ray Dose, z=100 cm

Conclusions

- Parallel Computing
 - Deterministic Transport: PENTRAN™ Code System
 - Wide Variety of Problems
 - Automatic Mesh generation, adaptive numerical differencing, grid projections
 - Acceleration schemes
- In 2007, emphasis on Whole Core 3-D
 Transport Modeling
- Questions?